MISSISSIPPI DEPARTMENT OF TRANSPORTATION

SPECIAL PROVISION NO. 907-711-4

CODE: (IS)

DATE: 06/26/2009

SUBJECT: Synthetic Structural Fiber Reinforcement

Section 711, Reinforcement and Wire Rope, of the 2004 Edition of the Mississippi Standard Specifications for Road and Bridge Construction is hereby amended as follows:

After Subsection 711.03.4.3 on page 665, add the following:

907-711.04--Synthetic Structural Fiber. The synthetic structural fibers shall be approved for listing in the Department’s “Approved Sources of Materials” prior to use. The synthetic structural fibers shall be added to the concrete and mixed in accordance with the manufacturer’s recommended methods.

907-711.04.1--Material Properties. The fibers shall meet the requirements of ASTM Designation: C 1116, Section 4.1.3. The fibers shall be made of polypropylene, polypropylene/polyethylene blend, nylon, or polyvinyl alcohol (PVA).

907-711.04.2--Minimum Dosage Rate. The dosage rate shall be such that the average residual strength ratio ($R_{150,3.0}$) of fiber reinforced concrete beams is a minimum of 20.0 percent when the beams are tested in accordance with ASTM Designation: C 1609. The dosage rate for fibers shall be determined by the following.

The fiber manufacturer shall have the fibers tested by an acceptable, independent laboratory acceptable to the Department and regularly inspected by the Cement and Concrete Reference Laboratory of the National Institutes of Standards and Technology and approved to perform ASTM Designations: C 39, C 78, and C192.

The laboratory shall test the fibers following the requirements of ASTM Designation: C 1609 in a minimum of three (3) test specimens cast from the same batch of concrete, molded in 6 x 6 x 20-inch standard beam molds meeting the requirements of ASTM Designation: C 31. The beams shall be tested on an 18-inch span. The tests for $R_{150,3.0}$ shall be performed when the average compressive strength of concrete used to cast the beams is between 3500 and 4500 psi. The tests for compressive strength shall follow the requirements of ASTM Designation: C 39. The average compressive strength shall be determined from a minimum of two (2) compressive strength cylinders.

The value for $R_{150,3}$ shall be determined using the following equation:

$$R_{150,3.0} = \frac{f_{150,3.0}}{f_i} \times 100$$
The residual flexural strength \(f_{150,3,0} \) shall be determined using the following equation:

\[
f_{150,3,0} = \frac{P_{150,3,0} \times L}{b \times d^2}
\]

where:

- \(f_{150,3,0} \) is the residual flexural strength at the midspan deflection of \(L/150 \), (psi),
- \(P_{150,3,0} \) is the residual load capacity at the midspan deflection of \(L/150 \), (lbf),
- \(L \) is the span, (in),
- \(b \) is the width of the specimen at the fracture, (in), and
- \(d \) is the depth of the specimen at the fracture, (in).

For a 6 x 6 x 20-inch beam, the \(P_{150,3,0} \) shall be measured at a midspan deflection of 0.12 inch.

Additionally, \(R_{150,3} \), \(f_{150,3,0} \), and \(P_{150,3,0} \) may also be referred to as \(R_{150} \), \(f_{150} \), and \(P_{150} \) respectively.

At the dosage rate required to achieve the minimum \(R_{150,3} \), the mixture shall both be workable and the fibers shall not form clumps.

The manufacturer shall submit to the State Materials Engineer certified test reports from the independent laboratory showing the test results of each test specimen.

907-711.04.3--Job Control Requirements. The synthetic structural fibers shall be one from the Department’s “Approved Sources of Materials.”

At the required dosage rate, the mixture shall both be workable and the fibers shall not form clumps to the satisfaction of the Engineer. If the mixture is determined by the Engineer to not be workable or have clumps of fibers, the mixture may be rejected.