Mississippi Department Of Transportation

Construction Manual

2017

INTRODUCTION

This Manual has been prepared to inform and assist construction inspection personnel in the performance of their duties and in the documentation of project activities. This is not a specification document and its content is not legally binding upon any Department contract and should be recognized as a guide only. Reference to certain sections of the Standard Specifications appear throughout in order to relate certain inspection activities to an applicable section of the Standard Specification.

Recognizing that any manual of this type must undergo continuous revisions, each recipient is encouraged to submit suggested changes through appropriate channels to the Construction Division. Approved changes, additions, or deletions will be issued as the need arises. Each recipient of the Construction Manual is responsible for keeping the contents of their copy up to date. Revisions will be posted on the Construction Division Intranet site.

This Construction Manual is presented with the sincere belief that it will aid in maintaining the highquality construction standards which have been established over the years by the Department. Mississippi Department of Transportation

CONTENTS

Introduction	ii
Contents	iv
Chapter 1 - Administrative and General Provisions	1-1
1.1 Department Organization	1-1
1.1.1 Construction Organization and Personnel	1-1
1.1.2 Resident and Project Engineers	1-3
1.2 Relations with Others	1-6
1.2.1 Relations with the Public	1-6
1.2.2 Relations with Property Owners	
1.2.3 Relations with Private Companies and Public Agencies	1-7
1.2.4 Inter-Departmental Relations	
1.2.5 Public Relations by News Media	
1.2.6 Relations with The Federal Highway Administration (FHWA)	1-8
1.2.7 Relations with Bidders	
1.2.8 Relations with the Contractor	
1.3 Project Records	
1.3.1 Preparation for Management of the Contract	
1.3.2 Keeping Project Records Up-To-Date	
1.3.3 Project Diary, Daily Work Reports and Inspector's Daily Reports	
1.3.4 Subcontracts and Rental Agreements	
1.3.5 Project Engineer's Affidavit	
1.3.6 Project Modifications	
1.3.7 Claims	
1.3.8 Estimated Final Quantities and Materials Certification1.3.9 Permits and Utilities	
1.3.10 Payment for Laboratories	
1.3.11 Safety	
1.3.12 Opening Roads to Traffic	
1.3.13 Labor Questionnaire - Form CAD-440	
1.3.14 Disadvantaged Business Enterprise Participation	
1.3.15 Assessment Report for Working Days - Form CSD-765	
1.3.16 Preconstruction Conference	
1.3.17 Progress Schedule and Contract Time	1-51
1.3.18 Percent of Elapsed Time	
1.3.19 Final Report of Project Engineer - Form CSD-200	
1.3.20 Fuel and Material Price Adjustment	
1.3.21 Final Adjustment for Fuel and Materials	
1.3.22 Recording of Measurement of Materials in Hauling Vehicles	
1.3.23 Salvaged Materials	1-59
Chapter 2 - Earthwork and Roadside Development	2-1
2.1 General	2-1
2.2 Earthwork	2-1

2.3 Clearing and Grubbing	
2.3.1 General	
2.3.2 Protection and Preservation of Property	
2.3.3 Extent of Clearing and Grubbing	
2.3.4 Removing Miscellaneous Structures	2-5
2.3.5 Abandoning Wells	2-5
2.3.6 Removing Signs and Other Traffic Control Devices	2-5
2.3.7 Burning and Removal of Debris	
2.3.8 Records and Reports	2-6
2.4 Excavation and Embankment	
2.4.1 General	
2.4.2 Excavation Operations	
2.4.3 Unsuitable Materials	
2.4.4 Surplus Material	
2.4.5 Embankment Construction	
2.4.6 Uniformity in Embankment Formation	
2.4.7 Drainage	
2.4.8 Finish Grading	
2.4.9 Documentation	
2.5 Structure Excavation	
2.6 Roadside Development	2-12
2.6.1 Fertilization	
2.6.2 Seeding	
2.6.3 Mulching	
2.6.4 Grassing	
2.6.5 Temporary Grassing	
2.6.6 Hydroseeding	
Chapter 3 - Bases	2.1
-	
3.1 General	
3.2 Granular Material Courses and Crushed Stone Base Courses	
3.3 Lime Treated Courses.	
3.3.1 General	
3.3.2 Types of Lime for Soil Stabilization	
3.3.3 Chemical Effects of Lime on Clay Soils	
3.3.4 Physical Effects of Lime on Clay Soils	
3.3.5 Classes of Treatment	
3.3.6 Construction Methods	
3.3.7 Records and Reports	
3.4 Cement Treated Courses.	
3.4.1 General	
3.4.2 Road-Mix	
3.4.3 Central-Mix	
3.4.4 Spreading, Compacting and Finishing	
3.4.5 Curing	
3.4.6 Records and Reports	

3.5 Lime-Fly Ash Treated Courses.	
3.5.1 General	
3.5.2 Construction Requirements	
3.5.3 Records and Reports	
3.6 Shoulders	
3.7 In-Grade Preparation	
Chapter 4 - Bituminous Pavements	
4.1 General	4-1
4.2 Asphalt Pavements	4-1
4.2.1 Asphalt Pavement Material Requirements	
4.2.2 Asphalt Pavement Surface Requirements	
4.2.3 Control and Workmanship of Asphalt Pavements	
4.2.4 Inspection Report for Asphalt Laydown Equipment	
4.3 Maintained Asphalt Pavements	
4.4 Open Graded Friction Course	4-8
4.5 Cold Bituminous Pavements.	4-9
4.6 Stone Matrix Asphalt	4-11
4.7 Tack Coats and Prime Coats	4-11
4.7.1 Tack Coats	4-12
4.7.2 Prime Coats	4-12
4.8 Bituminous Surface Treatment	
4.9 Ultra-Thin Asphalt Pavements	4-17
4.9 Ultra-Thin Asphalt PavementsChapter 5 - Rigid Pavements5.1 General	5-1
 4.9 Ultra-Thin Asphalt Pavements Chapter 5 - Rigid Pavements 5.1 General 5.1.1 Concrete Pavement. 	5-1 5-1 5-1
 4.9 Ultra-Thin Asphalt Pavements Chapter 5 - Rigid Pavements 5.1 General 5.1.1 Concrete Pavement. 5.1.2 Construction Requirements 	5-1 5-1 5-2
 4.9 Ultra-Thin Asphalt Pavements	5-1 5-1 5-1 5-2 5-4
 4.9 Ultra-Thin Asphalt Pavements Chapter 5 - Rigid Pavements 5.1 General 5.1.1 Concrete Pavement 5.1.2 Construction Requirements 5.1.3 Equipment Requirements 5.2 Maintained Concrete Pavements 	5-1 5-1 5-2 5-4 5-5
 4.9 Ultra-Thin Asphalt Pavements	5-1 5-1 5-2 5-4 5-5
 4.9 Ultra-Thin Asphalt Pavements Chapter 5 - Rigid Pavements 5.1 General 5.1.1 Concrete Pavement 5.1.2 Construction Requirements 5.1.3 Equipment Requirements 5.2 Maintained Concrete Pavements 	5-1 5-1 5-1 5-2 5-4 5-5 5-5
 4.9 Ultra-Thin Asphalt Pavements Chapter 5 - Rigid Pavements 5.1 General 5.1.1 Concrete Pavement. 5.1.2 Construction Requirements 5.1.3 Equipment Requirements 5.2 Maintained Concrete Pavements 5.3 Bridge End Pavement. 	5-1 5-1 5-1 5-2 5-4 5-4 5-5 5-5 5-5
 4.9 Ultra-Thin Asphalt Pavements Chapter 5 - Rigid Pavements 5.1 General 5.1.1 Concrete Pavement 5.1.2 Construction Requirements 5.1.3 Equipment Requirements 5.2 Maintained Concrete Pavements 5.3 Bridge End Pavement 5.4 Pressure Grouting Concrete Pavements 	
 4.9 Ultra-Thin Asphalt Pavements	5-1 5-1 5-2 5-2 5-4 5-5 5-5 5-5 5-5 6-1
 4.9 Ultra-Thin Asphalt Pavements. Chapter 5 - Rigid Pavements 5.1 General. 5.1.1 Concrete Pavement. 5.1.2 Construction Requirements 5.1.3 Equipment Requirements 5.2 Maintained Concrete Pavements. 5.3 Bridge End Pavement. 5.4 Pressure Grouting Concrete Pavements Chapter 6 - Incidental Construction 6.1 General. 	5-1 5-1 5-1 5-2 5-4 5-5 5-5 5-5 6-1 ete6-1
 4.9 Ultra-Thin Asphalt Pavements	5-1 5-1 5-1 5-2 5-2 5-4 5-5 5-5 5-5 6-1 ete6-1 6-1
 4.9 Ultra-Thin Asphalt Pavements	5-1 5-1 5-2 5-4 5-5 5-5 5-5 6-1 ete
 4.9 Ultra-Thin Asphalt Pavements Chapter 5 - Rigid Pavements 5.1 General 5.1.1 Concrete Pavement 5.1.2 Construction Requirements 5.1.3 Equipment Requirements 5.2 Maintained Concrete Pavements 5.3 Bridge End Pavement 5.4 Pressure Grouting Concrete Pavements Chapter 6 - Incidental Construction 6.1 General 6.2 Structural Concrete 6.2.1 Batching, Mixing, Transporting, Placing and Finishing Concrete 6.3 Bedding For Pipe. 	5-1 5-1 5-1 5-2 5-2 5-4 5-5 5-5 5-5 6-1 6-1 ete
 4.9 Ultra-Thin Asphalt Pavements Chapter 5 - Rigid Pavements 5.1 General 5.1.1 Concrete Pavement. 5.1.2 Construction Requirements 5.1.3 Equipment Requirements 5.2 Maintained Concrete Pavements 5.3 Bridge End Pavement. 5.4 Pressure Grouting Concrete Pavements Chapter 6 - Incidental Construction 6.1 General 6.2 Structural Concrete. 6.2.1 Batching, Mixing, Transporting, Placing and Finishing Concrete 6.3 Bedding For Pipe. 6.4 Right of Way Monumentation and Documentation 	5-1 5-1 5-1 5-2 5-4 5-5 5-5 5-5 6-1 6-1 ete

7.1 General	
7.2 Random Sampling	7-1
Chapter 8 - Bridges and Structures	
8.1 General	
8.2 Foundation Excavation	
8.3 Piling Bearing Value	
8.4 Curing Concrete	
8.5 Reinforcing Steel	
Chapter 9 - Estimates, Monthly and Final, with Supporting Data	0_1
9.1 General	
9.2 Monthly Payment(s)	
9.3 Partial Final Payments	
9.4 Final Payment	
9.4.1 General	
9.4.2 Supporting Data.	
9.4.3 Structure Excavation Tables - Final Quantity Data	
9.4.4 Signpost Foundations and Footing Tables – Final Quantity Data.	
9.4.5 Concrete and Reinforcing Steel for SS-2 – Final Quantity Data	
9.5 Preparation of Final Plans of Completed Work	
9.6 References	
Chapter 10 – Construction Surveying	
Chapter 10 – Construction Surveying 10.1 General	
10.1 General 10.2 Care of Surveying Equipment	
10.1 General	
10.1 General 10.2 Care of Surveying Equipment	
10.1 General	
10.1 General 10.2 Care of Surveying Equipment 10.3 Construction Centerline 10.4 Bench Marks	
10.1 General10.2 Care of Surveying Equipment10.3 Construction Centerline10.4 Bench Marks10.5 Setting Right-Of-Way Stakes	
 10.1 General 10.2 Care of Surveying Equipment 10.3 Construction Centerline 10.4 Bench Marks 10.5 Setting Right-Of-Way Stakes 10.6 Staking Limits of Clearing and Grubbing 	
 10.1 General 10.2 Care of Surveying Equipment 10.3 Construction Centerline 10.4 Bench Marks 10.5 Setting Right-Of-Way Stakes 10.6 Staking Limits of Clearing and Grubbing 10.7 Field Data Collection and Processing of Cross-Sections 	
 10.1 General 10.2 Care of Surveying Equipment 10.3 Construction Centerline 10.4 Bench Marks 10.5 Setting Right-Of-Way Stakes 10.6 Staking Limits of Clearing and Grubbing 10.7 Field Data Collection and Processing of Cross-Sections 10.8 Setting Slope Stakes 	
 10.1 General 10.2 Care of Surveying Equipment 10.3 Construction Centerline 10.4 Bench Marks 10.5 Setting Right-Of-Way Stakes 10.6 Staking Limits of Clearing and Grubbing 10.7 Field Data Collection and Processing of Cross-Sections 10.8 Setting Slope Stakes 10.9 Staking Side Roads and Private Entrances 	
 10.1 General	
 10.1 General 10.2 Care of Surveying Equipment 10.3 Construction Centerline 10.4 Bench Marks 10.5 Setting Right-Of-Way Stakes 10.6 Staking Limits of Clearing and Grubbing 10.7 Field Data Collection and Processing of Cross-Sections 10.8 Setting Slope Stakes 10.9 Staking Side Roads and Private Entrances 10.10 Staking Box Bridges, Box Culverts and Pipe Culverts 10.11 Layout of Bridges 	
 10.1 General	
 10.1 General	10-1 10-3 10-5 10-6 10-6 10-7 10-7 10-7 10-7 10-9 10-9 10-13 10-13 10-15 10-15
 10.1 General 10.2 Care of Surveying Equipment 10.3 Construction Centerline	
 10.1 General	

10.19 Automated Machine Guidance	
Abbreviations & Symbols	A-1
Forms	F-1
BRD-203 Final Pile Report	F-2
BRD-601 Pile Report	F-3
BRD-761 Test Pile Report	F-4
CAD-12 Report of Deductions and Incentive Payments	F-5
CAD-40 Bulletin Board Requirements	F-6
CAD-230 Truck Volume Calculations	F-7
CAD-240 Tack Coat and Prime Coat	F-8
CAD-250 Bar List Spreadsheet	F-9
CAD-280 Asphalt Deductions	F-12
CAD-440 Labor Questionnaire	F-13
CAD-724 Liquidated Damages	F-14
CAD-900 Check Off Sheet for Submission of Final Data	F-15
CSD-001 Force Account (Initial)	F-17
CSD-202 Force Account Statement of Extra Work Performed (Final)	F-18
CSD-203 Fertilizer Required	F-19
CSD-481 Report of Bituminous and Vegetative Material Applied	F-20
CSD-601 Project Engineer's Affidavit	F-21
CSD-603 Party Chief's Report	F-22
CSD-720 Class I Supplemental Agreement	F-23
CSD-720 Class II Advance Authority	F-28
CSD-720 Class II Supplemental Agreement	F-32
CSD-720 Class III Supplemental Agreement	F-38
CSD-723 Report of Seed Applied	
CSD-724 Surface Treatment Report of Material Applied	F-44
CSD-761 Traffic Control Inspection Report	
CSD-762 Contractor's Traffic Control Inspection Report	
CSD-765 Assessment Report for Available Working Days	F-49
CSD-770 Edge Drain Inspection Report	
CSD-780 Erosion and Sediment Control Report	
CSD-880 Fuel Price Adjustment	
CSD-881 Material Price Adjustment	
MRI Smoothness Incentive Report	
OCR-482 Certification of Payments to DBE Firms	
OCR-483 Comercially Useful Function	
OCR-484 Certification of Payments to Subcontractors	F-61

TMD-125 Daily Report of Chemical Stabilization	F-62
TMD-522 Field Density Report for Embankment	F-63
TMD-524 Structural Backfill, Subbase, Base and Shoulders	F-64
Glossary	G-1
Useful Tables and Charts	TC-1
Conversion of Minutes and Seconds To Decimal Parts of a Degree	TC-1
Decimal Parts of a Foot and Inch	TC-2
Weights and Measures	TC-3
Typical Township Subdivision	TC-4
Typical Subdivisions of a Section	TC-5
Table for Determining Volume of Liquid in a Partially Filled Cylindrical Tank	TC-6
Wind-Chill Chart	TC-7
Table for Estimating Quantities of Bituminous Mixtures	TC-8
Random Sampling Table	TC-9

CHAPTER 1 - ADMINISTRATIVE AND GENERAL PROVISIONS

1.1 DEPARTMENT ORGANIZATION

1.1.1 Construction Organization and Personnel

The Mississippi Department of Transportation is organized and operated under the laws of the State of Mississippi, generally codified under Sections 65-1-1, *et seq*. Mississippi Code of 1972, Annotated, as amended.

The Mississippi Department of Transportation (MDOT) operates its programs and services without regard to race, color, national origin, sex, age, or disability in accordance with Title VI of the Civil Rights Act of 1964, as amended and related statutes and implementing authorities.

The Mississippi Department of Transportation is responsible for providing a safe intermodal transportation network that is planned, designed, constructed and maintained in an effective, cost efficient, and environmentally sensitive manner. Several goals, multimodal and comprehensive in scope, have been developed. They are all important and interdependent.

- Goal 1. Improve mobility for Mississippi's people, commerce and industry.
- Goal 2. Ensure high standards of safety in the transportation system.
- Goal 3. Provide a transportation system which encourages and supports Mississippi's economic development.
- Goal 4. Improve intermodal efficiency and connectivity in transportation systems.
- Goal 5. Establish and maintain effective transportation system management processes.
- Goal 6. Maintain and preserve Mississippi's transportation system.
- Goal 7. Ensure that the transportation system development is sensitive to environmental and energy conservation concerns.
- Goal 8. Create effective transportation partnerships and cooperative processes.
- Goal 9. Provide a sound financial basis for the transportation system.

In order to have a mutual understanding among field personnel as to the functions and responsibilities of line and staff personnel, this Manual is provided to include reference to other Rules, principal responsibilities and authorities of line functionaries, and staff personnel as they relate to effective construction supervision.

<u>A. The Mississippi Transportation Commission.</u> The Mississippi Transportation Commission (Commission) is the governing body of the Department acting through the Executive Director by promulgating rules, regulations and policies to effectively accomplish the statutory responsibilities of the Department.

- <u>B. Executive Director.</u> The Executive Director as chief executive officer of MDOT is responsible for faithfully executing the policies and directives of the Commission; for construction, maintenance and related matters of all state designated transportation systems and programs as the law applies; for establishing general policies and procedures for the effective use of all legally available resources; and for cooperation with all other governmental bodies or civic organizations in matters relating to transportation including Federal Government and other States. See also Mississippi Code Section 65-1-10.
- C. Deputy Executive Director Chief Engineer. The Deputy Executive Director Chief Engineer is the chief technical officer of MDOT and is responsible for the development and execution of all technical policies and procedures and acts for the Director in the Director's absence. See also Mississippi Code Section 65-1-11.
- <u>D. Assistant Chief Engineer Field Operations.</u> It is through the Assistant Chief Engineer Field Operations that administrative procedures and decisions are passed to and from the Construction Division.
- <u>E.</u> Construction Division. The Construction Division functions as a staff organization in the overall administration of highway construction projects under State contracts and the coordination of matters relating to plan approval and contract preparation with other Divisions, the Districts, and the Federal Highway Administration (FHWA). The State Construction Engineer is the head of the Division and supervisor of internal policies and operations. The State Construction Engineer's staff consists of the Assistant State Construction Engineer, Area Engineers, Centralized Storm Water Compliance Engineer, the Specifications Engineer, the State Estimator, their assistants, and general office staff.

Regarding construction field personnel, the Area Engineers are the key representatives of the Construction Division. The Area Engineer is assigned a regular territory to cover in the field, usually a District, and, in addition, may be assigned special functions in other areas as warranted by expediency. The Area Engineer is available for consultation with the District Engineer, Assistant District Engineer - Construction, District Materials Engineer, Resident or Project Engineers, and FHWA on matters of contract preparation and construction beginning at the time preconstruction activities begin and continuing until completion and final acceptance of contract work. The Area Engineers are responsible for making inspections and reports to the State Construction Engineer which allows the Construction Division to coordinate contract preparation, work, methods, and procedures for similar construction throughout the State.

The Centralized Storm Water Compliance Engineer is responsible for assisting with the implementation of the Department's storm water policies. This includes making sure that there is consistency among the District's implementation of the policies through communication and dissemination of information. The Storm Water Compliance Engineer is well advised on MDOT's Best Management Practices (BMP) and evaluates the need for new erosion control pay items.

<u>F. District Office.</u> The responsibility and authority for the proper execution of contract work rests with the District Office. The District Engineer is the head of the District and supervisor of operations. The District Engineer's staff consists of the Assistant District Engineer – Construction, the District Materials Engineer, Resident and Project Engineers.

The Assistant District Engineer - Construction is assigned detail supervision, on behalf of the District Engineer, of all highway construction projects within the District, is responsible for the activities of supervisory engineering personnel and contract work and has commensurate delegated authority. The Assistant District Engineer - Construction supervises the work of Resident or Project Engineers and must be thoroughly familiar with the status of each contract by observation and information supplied by the Resident or Project Engineer. The Resident or Project Engineer must keep the Assistant District Engineer - Construction fully informed as to the technical and contractual status of each project. The Assistant District Engineer - Construction fully informed as to the technical and contractual status of each project. The Assistant District Engineer - Construction fully informed as to the technical and contractual status of each project. The Assistant District Engineer - Construction fully informed as to the technical and contractual status of each project. The Assistant District Engineer - Construction must be kept well informed on contract funds, whether the project is on schedule or the reason(s) for lack of progress, and any inconsistencies or inadequate performance.

The District Materials Engineer is responsible for laboratory testing of materials at the district and coordinating with the State Materials Engineer on materials to be tested at the central laboratory. The District Materials Engineer is also responsible for testing of materials at concrete plants, asphalt plants and prestressed and precast concrete facilities. It is important for the Resident or Project Engineers to coordinate with the District Materials Engineer on Contractor's operations to insure appropriate testing is performed at the proper time. The District Materials Engineer supports the project offices to insure they receive tools or information they need to perform their job and should be consulted on any material related issues that arise during construction.

<u>1.1.2 Resident and Project Engineers</u>

Reference to the Resident Engineer is understood to mean the Resident Engineer or Project Engineer, whichever is applicable. Likewise, reference to the Project Engineer is understood to mean the Project Engineer or Resident Engineer, whichever is applicable. In SiteManager, the Resident Engineers and Project Engineers have the same authority and are included in under the same group name, "Project Engineer".

Each contract will be under the supervision of a Resident Engineer. The Resident Engineer may also act as the Project Engineer, or in the case of multiple projects, the District Office may assign to the Resident Engineer one or more Project Engineers for direct supervision of one or more projects each.

Under the direction of the Assistant District Engineer - Construction, the Resident Engineers will have charge of all the projects for which they are assigned and will report directly to the Assistant District Engineer - Construction. Resident Engineers will be responsible for the efficiency of all Department personnel on work under their jurisdiction and for the satisfactory prosecution of the work under their supervision. They are responsible for studying the plans and contract documents for correctness in the representation of existing physical features of the project site, the suitability of the features proposed on the plans for construction at the sites proposed, and the adequacy of each computed or estimated quantity shown on the plans and in the proposal. They are responsible for the supervision of layout and inspection of construction; the preparation and maintenance of proper records of the work, as required; the preparation of current and final estimates of work performed and payments allowed; and the maintenance of proper relationships between themselves and their organization and the Contractor, the Federal Highway Administration and the public.

Absolute integrity on the part of all Department personnel is essential if public confidence in the Department is to be maintained. There is no position within the Department for which integrity is of more importance than the Resident Engineer position.

Resident Engineers, acting as the duly-appointed representative of the Chief Engineer, have the responsibility and authority for administering the contract construction of their projects in a firm, just and fair manner, equitable to the State and to the Contractor. Resident Engineers should expect to obtain no more than what is specified, nor can they accept any less than the contract requirements. In order to fulfill these functions, Resident Engineers should, at all times, know completely what all contract requirements are and should see that each member of the project organization knows precisely what the contract requirements are for the particular phase(s) of work to which they are assigned.

Resident Engineers are responsible for all contract construction and payment. All other Department personnel perform in support of the functions of the Resident Engineer. The responsibility of the handling and disbursement of entrusted public funds make it incumbent upon the Resident Engineers as a member of the Mississippi Department of Transportation's administrative and supervisory team to be sure that the quality of the work is as intended in the contract and that measurement and computations for pay quantities for acceptable work are authentic.

Resident Engineers will sign all quantity adjustments, current and final estimates, final plans and important instructions or orders to the Contractor. They may, with the approval of the Assistant District Engineer - Construction, delegate authority to their Project Engineer(s) to sign certain correspondence and reports to the District or Divisions and final cross-sections and other computations supporting current and final estimates with which the Project Engineer is most familiar. The Project Engineers approve all SiteManager current and final estimates and change orders before they go to the next level of approval.

For projects on which the Resident Engineers are also the Project Engineer, they will authorize Daily Work Reports for such project(s) each day and sign all reports, final cross-sections, computations supporting estimates and all other papers requiring signature of the Resident or Project Engineer. In SiteManager, the Project Engineers authorize all Daily Work Reports (DWR) for each day and creates the daily diary. The Project Engineers can create Daily Work Reports if they deem it necessary.

Project Engineers are responsible for obtaining results specified in the contract. Their responsibilities for the project(s) to which they are assigned are similar to those of a Resident Engineer, except that they report directly to the Resident Engineer. Their duties are similar to those of the Resident Engineer regarding the supervision of the contract, construction, the keeping of proper records and documentation, the preparation of current and final estimates, and the direct supervision of the project organization in the layout and inspection of the work and the fulfillment of all contract requirements.

Project Engineers should remember that their assignment is one that may depend on their development and the scope of their knowledge, experience, judgment, diplomacy, and record of integrity. They should make every effort to familiarize themselves with all procedures which would best compliment the work of the Resident Engineer.

Project Engineers must authorize Daily Work Reports each day for each project under their supervision. In SiteManager, Project Engineers have the authority to delegate certain duties to others under their supervision to act as Project Managers, Office Managers, and Office Aides. At the Project Engineers' discretion, the Project Manager can be granted the authority to create Daily Work Reports, generate current and final estimates, and create change orders. The Project Engineer can grant Office Managers and Office Aides the authority to create Daily Work Reports.

1.1.2.1 Assistant Project Engineers, Project Assistants, and Inspectors

Resident Engineers may, if they elect, serve as the chief inspector on certain phases of the work, or they may delegate this assignment to a Project Engineer, an Assistant Project Engineer, a Project Assistant, or one or more inspectors qualified to inspect the particular type of work being performed.

Usually an Assistant Project Engineer, a Project Assistant, or Chief Inspector will be assigned the responsibility for overall supervision of inspection. Personnel so assigned are expected to spend the major portion of their time in the field acting in the assigned capacity. Other inspectors will be assigned as the scope of the work requires. Proper inspection requires appropriate training, good judgment, diplomacy, common sense and a thorough knowledge of the work and contract requirements.

Inspectors are required to meet certain technician skills depending on classification. Training will be administered by District Office personnel. More information is available at the <u>MDOT@Work</u> Construction Division web page under Publications, Technician Forms

Other industry certifications for inspection and material testing will be required for specific duties.

Adherence to Individual and jobsite safety policies are important for all field personnel. The MDOT Safety Manual is available for review on the <u>MDOT@Work</u> site.

Inspectors on construction projects have the authority and duty to enforce the specifications. If differences in interpretation arise with the Contractor, the matter should be decided by the Resident Engineer, or, if necessary, by the District. The inspector must always bear in mind that the management of the work is the Contractor's business; however, if any methods are employed which the inspector has reason to believe will impair the quality of the finished work, the inspector shall advise the Contractor's representative accordingly and notify the inspector's superior immediately. The matter, if considered to be serious, should be resolved by the Resident Engineer or higher authority, if appropriate.

No inspector, regardless of position, is authorized to revoke, alter, enlarge or release any requirements of the contract. The inspector is authorized to and is obligated to reject nonconforming materials and work.

<u>All Department personnel should refrain from arguing with any Contractor supervisor or representative. Department personnel authority comes from the right to enforce the contract.</u>

The same inspector should generally not be utilized on successive jobs with the same Contractor. Certain personal relations and precedence can be established which may not be in the best public interest. However, it is sometimes desirable to assign the same inspector on successive jobs with the same Contractor because of the inspector's availability, knowledge, experience, and capacity for handling successively similar types of work. Such assignment, if made, should be based on the individual inspector's record of unqualified integrity and ability to provide firm, fair, equitable and proficient engineering inspection.

All inspectors must keep an Inspector's Daily Report in which matters of importance are recorded and documentation of work performed and materials used are recorded with such frequency as their superior considers necessary. All Inspectors Daily Reports, measurements, layouts, sketches,

computations, and other records of performance should be kept in a manner and with the completeness and accuracy as would be creditable evidence before the Commission.

1.2 RELATIONS WITH OTHERS

1.2.1 Relations with the Public

The general public judges the Department principally by the conduct of its employees and the orderliness and adequacy of the physical condition of that part of the work through which the public is passing.

The Department is a service organization and its employees are in daily contact with and under the surveillance of a large number of citizens. These may be adjacent property owners, local citizens of the nearby communities, public officials, tourists, or representatives of news gathering media, and it should be anticipated by each Department employee that at any given time someone is probably observing the work being performed and the attitudes and behavior of Department employees.

The prime responsibility of the employees is to perform their assigned function adequately and efficiently in order that the work being done is continuously in accordance with the requirements of the contract. Continuous performance and maintenance of the work is a credit to the Department as a public service organization. In fulfilling the prime responsibility, the employees must at all times be courteous and patient in their visual and verbal contacts with others.

When some inconvenience to adjacent property owners or to other segments of the general public is unavoidable, all precautions must be exercised in holding such inconvenience to the minimum reasonably necessary and for the shortest reasonable period of time. This is a responsibility of the Contractor under the contract; seeing that it is accomplished is a responsibility of the Department employee under the policies of this Department. A courteous explanation of the reasons for these inconveniences and knowledgeable answers to questions from the public are essential in creating good public relations. A Department employee should courteously offer to refer a question to a more knowledgeable employee rather than attempt to answer a question without a reasonably complete knowledge of the controlling facts involved.

The importance of proper public relations upon first contact cannot be overemphasized. The Resident Engineer should brief all field personnel on a courteous approach to initial contacts and should periodically hold briefing discussions in which reviews are made of particular questions asked or comments made by others and the replies that were given by the Department employee. Such discussions will enlighten and impress the employee into a consciousness of good public relations.

1.2.2 Relations with Property Owners

Property owners are most directly affected by the Department's survey work and construction operations. Therefore, one of the most important phases of public relations work is in dealing with the property owners whose property the survey crosses or is near and with the owners of property affected by the construction.

Prior to entry on private lands for surveying, exploration for pits or for other purposes, the responsible Engineer should prepare a list of property owners. The Engineer should then visit the owners, in company with another member of the Department to serve as a witness, explain the nature of the proposed entry onto their lands, and seek permission to accomplish the work proposed. In the case of an absentee landlord operating from the site by considerable distance, lessees or tenants should be advised of proposed entry and tentative permission obtained. Careful notations of the date(s), time, place and discussion(s) details should be made and signed by the Engineer and owner or lessee (tenant), witnessed by the accompanying Department employee and, if practicable, by other parties present.

If it is not practical or economical to visit an absentee owner, this owner should be contacted by letter containing all necessary information, including any tentative permission of lessee or tenant to grant right-of-entry for the purpose(s) outlined. If the permission granted is overly restrictive, the District Engineer should be notified for advice. When the rights-of-entry are exercised, every precaution must be taken to observe and honor all agreements and to prevent any unauthorized or unnecessary damage.

After the contract is let and before construction starts, the Engineer and, if possible, the Contractor's superintendent should meet with the property owner to outline the work to be done and to assure the owner that inconvenience and nuisances will be held to the practicable minimum.

As in all other public relations, the employee should courteously listen to the property owner's problem, request, or question, and try to answer or explain intelligently. If the employee is not sure of the answer or explanation, the property owner should be advised that the question will be discussed with superiors and that the property owner will be advised of an answer as soon as possible. An appropriate follow-up should be made.

Frank, courteous, and factual discussions with the property owner can generate a feeling that the Department is not an impersonal organization running over the individual and the public, and will usually promote an atmosphere of cooperation.

1.2.3 Relations with Private Companies and Public Agencies

Good public relations have just as beneficial an effect in dealing with utility companies and other public agencies. The Resident Engineers should make personal contact with the officials or representatives of the utility company, governmental agency or department with whom they will be dealing. They will find it much easier to work with these people during the life of the contract if they have met them personally prior to actual business contact. Included in the government agencies with whose personnel they should have more than an impersonal telephone contact is the Mississippi Highway Safety Patrol and local police organizations. Personal contact with all these people, during which the Engineer acquaints them with the planned operations prior to actual construction, will enable them to better schedule their work or services to the best advantage of all concerned.

It is of extreme importance that the Mississippi Highway Safety Patrol and local police organizations be notified to making any change in the normal flow of traffic or in a change from an existing detour flow to another traffic flow pattern. The District Office should also be notified sufficiently in advance of any planned change in traffic patterns so that they may have time to assist in preparing proper information to inform the public of the change.

1.2.4 Inter-Departmental Relations

It is very important that inter-departmental relations be harmonious and all manpower resources and capabilities are utilized in the best public interest in the construction and maintenance of our highways.

If there are questions as to design, specifications, testing procedures, measurement and payment or some other feature, it is advisable to seek the advice of other Department personnel qualified to help resolve the questions raised. Constructive criticism and meaningful positive suggestions directed toward improvements will be expected, welcomed and given due consideration by other Divisions.

1.2.5 Public Relations by News Media

The main difference between public relations by personal contact and public relations by news media where information must be conveyed to a very large segment of the public at one time is the manner in which the information on a given subject is to be conveyed. S.O.P. No. ADM-01-07-01-000 adequately covers the procedures to be used in the distribution of information to the public by use of news media.

The Resident or Project Engineer should consult with the District Engineer or the District's representative prior to conferring with Public Affairs Division so that the information to be furnished will be as mutually helpful as possible.

1.2.6 Relations with The Federal Highway Administration (FHWA)

On a federal-aid funded project for which any money is furnished by the FHWA, a project agreement between the State and the FHWA is executed in which the State agrees that the project will be constructed in accordance with the approved plans, specifications and other contract documents. The Federal Government agrees thereupon to reimburse its portion of the cost of the work when the FHWA can certify that the work was constructed in accordance with the approved contract documents.

Large projects with federal-aid funding or projects that have an elevated risk, contain elements of higher risk, or present a meaningful opportunity for FHWA involvement to enhance meeting program or project objectives will be designated as Projects of Division Interest (PoDI). These projects will include FHWA retaining certain project approvals that are normally delegated to MDOT. Specific items requiring FHWA approval actions on PoDI projects are outlined within the "Construction Actions on PoDI's Summary Table" in this section.

The State requires the Contractor to perform the work in accordance with the contract. MDOT project staff performs the daily routine monitoring and oversight of the federal-aid projects. The FHWA Engineers may perform periodic in-depth construction inspections of the work being performed by the Contractor and procedures being used by the Department in the fulfillment of its contract with the Federal Government.

It is the Department's policy to facilitate these inspections and cooperate with the FHWA Engineers in performing their assignment. The FHWA Engineers do not make inspections on a project for the purpose of checking on the Project Engineers or any other individual, but rather to determine that covenants made between the Federal Government and the State Government are being fulfilled.

As with any other contract, project agreements between the State and the Federal Government are binding on both the FHWA and the Department and requirements provided there under must not be changed by either without the prior concurrence of the other. Therefore, the Resident and Project Engineers should keep the FHWA Engineers fully informed on proposed and necessary changes or added work so a workable relationship between the two parties may exist and to facilitate formal approval of quantity adjustments and supplemental agreements when submitted to the FHWA. Department Engineers should understand that FHWA inspection personnel are fellow Engineers performing a similar function under separate but related contracts.

<u>CONSTRUCTION</u> ACTIONS on Projects of Di (All construction actions beginning with bid open		
ACTION	FHWA Approval Required?	Approval/ Information Sharing Process
Close MDOT/FHWA coordination is essential throughout construction. FHWA participation in pertinent project meetings/reviews and receipt of pertinent correspondence in addition to the listed action items is essential. Meetings/reviews examples include: Preconstruction Conferences, Partnering Meetings, Meetings on Supplemental Agreements, Meetings on Claims, Meetings on Contract Terminations, Final Inspections, etc. Correspondence examples include: Executed Contract, Notice to Proceed, Preconstruction Conference Minutes, Project Schedules, Claim Notice of Intent, Claim Letters/Forms, Monthly Construction Estimates, Inspection Punch List, Final Inspection Punch List Completion Notifications, etc.	No	MDOT coordinates meetings/ reviews and shares pertinent correspondence with FHWA via appropriate means (mail, email, access to site manager, etc.) for information purposes. FHWA participates in project meetings/reviews and reviews/ discusses items as needed
Concur in award of contract	Yes	MDOT submits request by letter
Concur in rejection of all bids	Yes	FHWA responds by stamping request letter
Approve changes and extra work (Supplemental Agreements, Force Account Agreements, Quantity Adjustments)	Yes	MDOT submits request with supporting documentation FHWA responds by signing the
Approve contract time extensions	Yes	request
Concur in settlement of contract claims	Yes	MDOT submits request by letter
Concur in termination of construction contracts	Yes	with supporting documentation
Waive Buy America provisions Construction inspections, including final inspection	Yes N/A	FHWA responds by letterFHWAconductsperiodicconstruction inspections.FHWAalsoperformsafinalprojectinspection.Aftereachinspection.Aftereachinspectionreport eachinspectionreport toMDOT
Accept materials certification	Yes	MDOT submits certificate FHWA accepts with FHWA's Final Acceptance issuance
Final acceptance of project	Yes	FHWA issues final acceptance report

1.2.7 Relations with Bidders

It is to the mutual advantage of the State and the Contractors to make certain that all aspects of the work are investigated thoroughly prior to bidding and that all prospective bidders are given the same information.

All prospective bidders must be treated impartially and alike. In no instance should the Resident Engineer make statements regarding the possibility or probability of changes in plans, specifications, or quantities. The Contractor should submit all questions regarding the project to Construction Division thru the on-line Questions and Answers procedure.

1.2.8 Relations with the Contractor

Every construction contract is a joint effort between the Department and the Contractor. The effort of either party directly relates to the accomplishment of the other. The functions of the Engineer and inspectors are intermingled with the Contractor's efforts and accomplishments throughout the life of the contract. Each must depend upon the other and both are expected to be dependable.

All Department employees are expected to perform their function promptly and adequately and to cooperate with the Contractor to expedite the construction of the project without violating any of the contract documents or sacrificing the quality of work or materials.

The Contractor and all the Contractor's employees should cooperate with the Department toward the accomplishment of Department personnel functions and toward compliance with the contract documents.

The day-to-day relations with the Contractor should be amicable without being fraternal. Instructions to the Contractor should be within the scope of the plans and specifications and should be clear and precise.

The Resident or Project Engineer must see that instructions given to the Contractor are clearly understood.

Important instructions should be given or confirmed in writing and made a part of the project records. The Engineer is expected to assume that all instructions are important and may be a future basis for further instructions or for a determination of equity. Instructions should be given only to authorized personnel of the Contractor and not to individual workers. Cooperation with the Contractor <u>does not ever</u> include project personnel acting as foreman or in a supervisory capacity for the Contractor.

Differences of opinion between the Contractor's supervisory personnel and those of the Department Inspectors are not uncommon regarding issues such as the interpretation of the specifications, quality of work, or whether work performed is a pay item or a required subsidiary to a pay item. The Resident or Project Engineer is expected to be sufficiently knowledgeable in these respects to arbitrate such controversies, and an attempt should be made to resolve these differences promptly and fairly within the scope of the contract. Failing to do so, the Resident or Project Engineer should refer the matter to the Engineer's immediate superior. Disposition made in any such controversy is to be recorded and made known to all parties concerned.

1.2.8.1 The Partnering Process

Partnering is a project management technique that assists project teams with setting goals, resolving disputes and improving project outcomes. It is a methodology that has been used for many years to reduce litigation and improve productivity. This initiative is jointly embraced and supported by both the Department and members of the highway construction industry in our State. Partnering, whether formal or informal, is a requirement of all projects. It obligates both parties to good faith and fair dealing in the performance and enforcement of the contract.

The Department and the Contractor will enter into Formal Partnering if required by the Contract or requested by the Contractor. In either situation, any cost associated with effectuating this partnering will be agreed to by both parties and will be shared equally. The Contractor working with the assistance of the District and the State Construction Engineer will initiate the process.

If the project does not have a Formal Partnering process, an informal partnering meeting shall be conducted on at least a monthly basis. It will be mandatory that the Project Engineer and Project Superintendent attend the meeting. It is recommended that Department Inspectors, foremen, and other project managers attend the meeting. The Project Engineer will be responsible for taking minutes of the meeting. As soon as practical after the meeting, the Engineer will send a copy of the minutes of the meeting to the Contractor, District Construction Engineer, and State Construction Engineer. The Contractor will have 30 days to dispute the contents of the minutes before the minutes become an official record of the project.

1.3 PROJECT RECORDS

1.3.1 Preparation for Management of the Contract

Immediately after being assigned a project, the Resident Engineer should begin making preparations for administration of the contract.

The Resident Engineer and Assistants should thoroughly study the plans, specifications, and contract documents to determine whether any conflicts, problems, or changes can be anticipated due to existing field conditions. Any errors or changes to the contract found prior to letting should be forwarded to the Construction Division as soon as possible so these changes can be made to the contract prior to taking bids. All major findings should be discussed with the Assistant District Engineer - Construction before any action is taken.

If any potential problems of significant proportion are discovered, such as essential plan changes, the need for extra work, major quantity changes or poorly defined requirements relating to any items of work, immediate action should be taken to resolve or clarify the issue. In any event, the Resident Engineer should know the Department's official position regarding these issues before they are presented at the pre-construction conference.

If any commitments have been made by the Department during the environmental process, a Gold Sheet will be included in the Environmental Document. The contents of the Gold Sheet will be included in the contract documents. These commitments are binding and must be adhered to by the Contractor and MDOT project staff.

On new construction and reconstruction projects, efforts are made to relocate any existing utilities in advance of construction. The utilities shown in the plans may indicate the location prior to relocation.

The Project Engineer should consult with the District Utility Coordinator or District Permit Officer if there are any concerns over potential utility conflicts.

On occasion, it may be found that the plans or proposal contain some potentially controversial issues or other significant considerations. In such a situation, a preliminary conference involving Project, District, and Construction Division personnel and Federal Highway Administration officials, if necessary, should be held and the issues resolved. Such a conference should be held well in advance of the pre-construction conference so that the details and proposals decided on can be prepared for presentation at the pre-construction conference with the Contractor.

Before construction begins, the Resident Engineer should arrange an informal meeting with all project personnel so that they are briefed on the work related to the functions each will perform. Such a meeting will allow any questions regarding the work to be discussed and thereby increase personnel effectiveness.

Some of the items which could be covered at the meeting are the following:

- 1. Delegation of work and lines of authority for inspectors to be assigned to the project.
- 2. Employee's responsibilities and how they fit into the overall engineering supervision and inspection.
- 3. Frequency of tests and inspections. What to do when unacceptable work or improper methods or equipment are encountered on the job.
- 4. Legal relations and responsibility of employees toward the public, the Contractor, and visiting officials.
- 5. Regulations regarding fraudulent representations, misstatement of fact, false reporting, etc.
- 6. Documentation of procedures, quality and quantity control and record accounting practice.
- 7. Scope of the project and probable methods of proceeding.
- 8. Delegation of authority in SiteManager.

After the plans have been checked, any office or field books that may be prepared in advance should be set up for the project.

The Resident Engineer should have a filing system set up for proper storage of project records and correspondence. The extent of the system will vary with the size of the project, but in all cases it should be adequate to keep project records readily available for reference by project personnel, the Assistant District Engineer - Construction, Area Engineer, and Federal Highway Administration personnel. This file should be indexed into enough sections to separate the records by material, source, etc., as necessary for quick location. Sections will be cross-referenced, if necessary. The following is a suggested minimum project file assembly.

1. CORRESPONDENCE – Letters and Memos

- 2. ESTIMATES Pay Estimates, Govt Estimates, Advancement of Materials, Time Assessments
- 3. CHANGE ORDERS Supplemental Agreements and Quantity Adjustments
- 4. LABOR Payrolls, OCR Forms, Labor Questionnaires, Rental Agreements, Trainee Reports
- 5. TRAFFIC CONTROL TC Plan, TC Reports, Accident Reports, Sign Inventory
- 6. EROSION CONTROL EC Plan, EC Permits, EC Inspection Reports
- 7. TESTING Certifications, Test Reports, Mix Designs, QCQA Plan
- 8. SUBMITTALS Shop Drawings and Submittals
- 9. SURVEY Notes, Grades, Bench Marks, Deeds, E&C Agreements
- 10. FINAL PAY Pay Item Notes, Truck Measurements, Calibrations, Bar Lists, Pile Reports, MRI Data

1.3.2 Keeping Project Records Up-To-Date

Subsections 105.03 and 106.03 of the Standard Specifications impose some obligations upon the Engineer which must be rigidly followed.

Maintenance of the project files is the responsibility of the Project Engineer. Accepted test reports, certifications, etc. under the provisions of Subsection 105.03 of the Standard Specifications for materials and work must be kept up-to-date. The project files must reflect, as the work progresses, whether or not all materials and work are in reasonably close conformity with contract requirements. The Project Engineer is expected to insure that project records are up-to-date and accurate should an inspection of the records be made, and to further expedite final acceptance and payment.

Most project records will be kept in SiteManager using the forms and layout format set out in the SiteManager modules. The information shown in most of the illustrations of this Manual are based on departmental forms and may vary slightly from those generated by SiteManager and other applications.

Section 110 of the Standard Specifications addresses the Contractor's requirements in regards to payrolls and wage rates. The Project Engineer or his/her designee shall thoroughly review all payrolls submitted by the Contractor with special emphasis given to the initial submission and when employees are added or change classifications. This review is to verify that the submitted wages rates are equal to or exceed the wages rates listed in the contract proposal.

1.3.3 Project Diary, Daily Work Reports and Inspector's Daily Reports

1.3.3.1 Project Diary

The term "Project Diary" as used in engineering work has the primary definition as follows: <u>"a record</u> or events, transactions, or observations kept daily or at frequent intervals."

The project diary, a compilation of all Daily Work Reports (DWR), is one of the most important records of any project. Project Diaries are usually read by reviewers as a means of familiarizing

themselves with the project prior to actually beginning a review of the other records. Project Diaries should be kept in such detail and manner that new personnel could take over the work at any time. Project Diaries must be complete enough so that the reader, who may never have been on the project but who is generally familiar with construction work, can form an accurate picture of each day's work after reading all Project Diary entries.

The Project Diary is the property of the Department and shall be part of the project records. The Project Diary is the primary document concerning weather, progress, suitability and condition of equipment, acceptability of work completed, etc. A good Project Diary can provide valuable information and evidence in the event controversies arise. On major claims, force account work, or when major problems are encountered, the Project Diary may be supplemented with photographs or videos, at the discretion of the Engineer and attached to the DWR in SiteManager. Personal information should not be entered in the Project Diary. Due to the importance of Project Diaries, it is essential that Project Engineers review DWRs critically to be sure that they conform to the standards set forth hereinafter and that they are kept daily.

1.3.3.2 Daily Work Reports

The contents of the DWR become a part of the records of the project and should be accurately and conscientiously prepared. The DWR should include a brief, factual, concise account of the activity of the day of all matters which are considered valuable as a permanent record. A DWR is to be prepared daily beginning on the day listed in the contract for contract time to start, on the day the Contractor starts work, or on the day engineering expenses first occur, whichever is the earlier. DWRs continue through the day the final data is forwarded to the Final Plans Section of Contract Administration Division for checking. If additional engineering charges are made to the project after the final data has been forwarded, supplemental DWR sheets showing the dates involved are to be submitted.

A quick reference guide for DWR's is located on <u>MDOT@Work</u>. It provides guidance on what information is to be entered into each field on the DWR and how to navigate through the application to complete the report. Information to complete the DWR is drawn from the Inspector's Daily Reports and notes from the Project Engineer.

The Working Day tool on the DWR is the place where time will be assessed for the contract. Any errors made in assessing time to the project cannot be corrected on the DWR after the Working Day tool has been saved. Any corrections are to be made under Project Diary Adjustments. More details on completing the time assessments are shown in Section <u>1.3.17 Progress Schedule and Contract Time</u>, of this Manual.

The Project Engineer is the only person with the authority to authorize or not authorize the Daily Work Reports. An example of a project DWR is shown on page 1-15.

1.3.3.3 Inspector's Daily Reports

Engineering personnel performing various inspection activities on a project are to submit daily reports covering the phase(s) of inspection to which they are assigned. These reports are to contain pertinent information, most of which will be transferred to the Daily Work Report and become a permanent historical record of the project. The Inspector's Daily Report is the means by which the Project Engineer and office staff are informed of the Contractor's activities and approximate quantities of

work accomplished each day. The report may also serve as a source of approximate quantities for progress payments to the Contractor.

The Inspector's Daily Report should contain at a minimum the following information:

- 1. Current weather conditions with temperatures or temperature range.
- 2. Previous rainfall.
- 2. Soil Conditions.
- 3. Type(s) of work inspected.
- 4. Location of work by stations.
- 5. An up-to-date inventory of Contractor's and/or Subcontractor's equipment noting arrival and departure of major equipment and conditions of equipment.
- 6. A list of the Contractor's and/or Subcontractor's personnel by classification.
- 7. Efficiency of Contractor's operations, difficulties encountered and corrective actions taken.
- 8. Factors or conditions that might hinder the Contractor's operations and cause delays.
- 9. Time of shutting down or resumption of work and explanations of the delays.
- 10. Unusual conditions, if any, such as high water, bridge construction problems, slides, unsatisfactory subgrade or foundation conditions, detour conditions, the condition of construction signs and traffic control devices, etc. Care should be used when explaining hazardous conditions.
- 11. Information and records pertinent to any time spent by the Contractor's or Subcontractor's personnel or equipment on disputable items of work, work which might qualify for additional payment as extra work or for which the Contractor has requested additional payment contending that it is extra work, and especially any work which might be the basis of a claim. This information is necessary in supporting or denying additional compensation. Equipment used under situations listed in this paragraph should be specifically detailed to include brand, model number, horsepower rating, etc., so that accurate rental rates can be obtained.
- 12. Work or materials rejected and reasons therefore.
- 13. Any problem conditions regarding erosion control and siltation.
- 14. Closing and opening the road and detours to traffic; dates of starting and completing major items of work.
- 15. Accidents and any condition(s) detrimental to the safe maintenance of traffic. This could include, but is not limited to, improper maintenance of the travelway, inadequate signing or other warning devices, insufficient number or incompetent flaggers, etc.

- 16. Progress of staking and surveys.
- 17. Discussions with the Contractor including agreements made, verbal instructions, differences with Contractor over work, quality of performance and decisions made.
- 18. The daily quantities of pay items which can be reasonably estimated and are not covered by other daily reports. These would be items such as cubic yards of granular material, feet of pipe culverts, etc.
- 19. Official visits and inspections.

List the names and duties of all Department personnel under the direct supervision of the inspector who are preparing the report. Hours worked by personnel are to be reported to the whole hour and should be separated by project if more than one project is being supervised. The report must be signed and turned in to the Project Office daily and retained in the Project files for at least 7 years.

RPT-ID: RDWRHCON			Ν	Mississippi	DATE:	03/2	27/2017
USER: jdoe Doe,	John l		-	ent of Transportation	PAGE:	1 0	f 3
DWR Date: 03/23	/2017	Contract ID: CSP00	022010811		Authorized: No L	ocked: No	Paid: No
Inspector ID: jtod	d	Inspector: Todd, Joh	n M.		<u> </u>		1
High Temp: 76	Low	Temp: 5 9	A.M. Condition	Partly cloudy	.M. Condition: Partly c	cloudy	
Work Suspended	Гіте: 0	0:00 Work Resumed	Time: 00:00	No Work Items Instid: 🗹 N	o Contrs Present: 🗖	No Staff P	resent: 🗖
Remarks: Yes		Contractor erations	Maint. Of Tr p.m (Worked 5 H ABC Contrac Structural Ex	ctor – PRIME cavation & Placing 18" RC		:30 a.m. Te	o 2:40
			Placing Borro (Worked 8 H XYZ Constru	ctor – PRIME ow B7-6 Mtl. 12+17-15+2: (rs.) action – SUB as For 18" Collars 8+00 LL	·	C	RS
		Engineering tivities	Parker Inspt. Davis Inspt. Mitchell Insp Taylor Inspt.	Supervision State Personnel & Worked Project Site & Worked On Placing 18" RCP & Structu ot. Placing 18" RCP & Stru- Placing Borrow B7-6 Mtl. d On Project Documentatio	Project Documents ral Excavation ctural Excavation & Maint. Of Traff	ation	
	3. 5	Soil Conditions	AM - Sat PM - Sat				
	4. I	Rain/Precipitation	n N/A				
	Ins	pector's Remarks	date. (J. Smit	ctor's trackhoe broke down			

Mississippi Department of Transportation

Construction Manual

PT-ID: RDW SER: jdoe Doe	11		DAT PAG		3/27/201 2 of 3
Contracto	r Name: <u>ABC Contractor, Inc.</u>		Hrs	Worked:	<u>140.00</u>
Labor:	Personnel Title	Qty	Hrs.Worked		
	Foreman	1	8.000		
	Operator (All Types) Owner	2	8.000	_	
	Owner	1	8.000	_	
	Flagger	2	8.000	_	
	Truck Driver (All Types) Foreman (Crew 2)	7	8.000	_	
	Foreman (Crew 2)	1	7.000	_	
	Laborer, Unskilled	2	7.000	_	
	Operator (All Types) (Crew 2)	1	7.000	_	
	Laborer, Unskilled (Crew 2)	1	8.000	_	
Equipment:	Description	Qty	Qty Used	Hrs.Used	
	Pickup	5	5	8.000	
	Bulldozer	2	1	8.000	
	Backhoe	1	1	8.000	
	Power Broom	1	1	8.000	
	GPS Base Station	1	1	8.000	
	GPS Rover	1	1	8.000	
	Tractor Trailer Rig	1	1	8.000	
	Barrels	0	0	8.000	
	Stop/Slow Paddle	2	2	8.000	
	Hand-Held Radio	2	2	8.000	
	Tractor (Truck)	7	7	8.000	
	Dump Trailer	7	7	8.000	
	Trackhoe	1	1	7.000	
Doe	, John D				
Contracto	r Name: XYZ Construction, Inc.		Hrs	Worked:	<u>32.000</u>
Labor:	Personnel Title	Qty	Hrs.Worked	_	
	Foreman	1	8.000	_	
	Laborer, Unskilled	2	8.000	_	
	Carpenter	1	8.000	_	
Equipment:	Description	Qty	Qty Used	Hrs.Used	
	Pickup	1	1	8.000	
	Equipment Trailer	1	1	8.000	
	Mini Excavator	1	1	8.000	•

RPT-ID: RDWRHCON USER: jdoe Doe, John D		Mississ nent of	sippi Transpo	ortation	DATE: PAGE:	03/27/2017 3 of 3
	Daily Staff Information					
Staff Member	Work Code	S/C	Reg. Hrs.	Vehicle ID	Start M	End M
Smith, Jessica E.		S	8.000	9000907	17997	18040
Jones, Robert D.		S	8.000	9000906	31700	31800
Parker, James P.		S	8.000			
Davis, James P.		S	8.000	9000054	103384	103429
Mitchell, Barbara S.		S	7.000	9001042	1770	1807
Taylor, Evan G		S	8.000			
Todd, John M.		S	8.000			

1.3.4 Subcontracts and Rental Agreements

Subcontractors must have approved subcontracts prior to performing any work on a construction project. The forms necessary are available to the Contractor on the Contract Administration website and approved copies are to be maintained in the project files. Rental Agreements for equipment must also be approved by the Project Engineer and maintained in the file for all equipment not owned by the Contractor performing the work. This form (Form CAD-160) is available on the Contract Administration Division website.

1.3.5 Project Engineer's Affidavit

Upon completion of a construction project, the Project Engineer shall certify that the work performed on the project was in accordance with Final Plans, cross-sections and specifications. The Project Engineer shall include notarized Form <u>CSD-601</u>, Project Engineer's Affidavit Accompanying Final Estimate, in triplicate as part of the submission of final supporting data to the Final Plans Section of Contract Administration Division.

1.3.6 Project Modifications

Project modifications, when found necessary, are typically made through the processing of Quantity Adjustments and/or Supplemental Agreements. Quantity Adjustments (Form <u>CSD-081</u>) are used to modify the original estimated plan quantities due to changes caused by plan errors, field conditions, etc. Supplemental Agreements (Form <u>CSD-720</u>) are used to modify plans and specifications as required as construction progresses. Subsections 104.02, 104.02.1, 104.02.2, 104.02.3, 104.02.4, and 104.03 of the Standard Specifications outline the various restrictions / requirements related to project modifications, Supplemental Agreements, and early Written Notifications.

In SiteManager, supplemental agreements and quantity adjustments are both considered Change Orders. Quantity Adjustments and Supplemental Agreements are to be in accordance to <u>1.3.6.1</u> Quantity Adjustments and <u>1.3.6.2</u> Supplemental Agreements of this Manual. Templates for supplemental agreements and quantity adjustments are available in the Change Order Manager and should be used for generating supplemental agreements and quantity adjustments. Coordination efforts, evaluation requirements, support documentation requirements, approval steps, and final distribution and document filing are outlined within <u>Sections 1.3.6.1</u>, <u>1.3.6.2</u>, and <u>1.3.6.3</u> and the Supplemental Agreement and Advance Authority Flow Charts in these Sections of the Manual. Fully executed copies of quantity adjustments and supplemental agreements with supporting documents (Contractor, MDOT, etc.), and revised government estimates (if applicable) should be saved electronically in the project file.

1.3.6.1 Quantity Adjustments

A quantity adjustment will be initiated by the Project Engineer, as necessary. Quantity Adjustments should accompany all Class II and Class III supplemental agreements along with cost changes. In addition to the information contained herein, detailed steps/procedures associated with contract changes (supplemental agreements and quantity adjustments) are outlined in the Supplemental Agreement and Advance Authority Flow Charts.

The Quantity Adjustment Form <u>CSD-081</u> is developed through Change Order Manager. A quick reference guide for Quantity Adjustments is located on <u>MDOT@Work</u>. Once logged into MDOT@Work, proceed to drop down menu under Applications, select Site Manager, then select

Getting Started in SiteManager listed under Reports & References Information. The guide provides guidance on what information is to be entered into each field on the Quantity Adjustment and how to navigate through the application to complete the report.

When a Quantity Adjustment amount exceeds the Contingency and excess Construction Engineering and Inspection funds in the Government Estimate, the Project Engineer will prepare and submit a modified Government Estimate along with the proposed Quantity Adjustment requiring the modification to the District Office. The District Office will confirm that the Modified Government Estimate is correct and submit it to the Contract Administration Division. The Contract Administration Division Director will check the modified Project Agreement Estimate cost and, on federally funded projects, submit the modified Government Estimate and supporting documents to the FHWA for approval.

Minor changes that may be considered field adjustments necessary to carry out the intent of the plans will not ordinarily require Quantity Adjustments. When the accumulation of these minor changes become of such magnitude as to exceed the Contingency and excess Construction Engineering and Inspection funds in the Government Estimate, they are to be combined and submitted on one Quantity Adjustment or Form <u>CSD-200</u>, the principal purpose of which is to increase or decrease the authorized cost of the project.

On Projects of Division Interest (PoDI) Federal Aid Projects. it is required that the FHWA Transportation Engineer be involved with the development and review of the proposed project modifications and related Supplemental Agreement, Advance Authority, and Quantity Adjustment.

The District Engineer shall have Departmental final signature authority for the Department on all Quantity Adjustments.

On PoDI Federal Aid Projects. after execution by all parties and prior to distribution, FHWA approval must be obtained by submitting two originals and one copy with all supporting documentation with each to the FHWA. The FHWA will retain the copy with supporting documentation for its records and return the two signed originals with supporting documentation to the sender.

For Quantity Adjustments that accompany a Supplemental Agreements, distribution will be made in accordance with the supplemental agreement guidelines.

For quantity adjustments that do not accompany a supplemental agreement, the District Engineer, after obtaining all approvals, will make the following distribution accompanied with a cover memo and supporting documentation for the internal files:

Original:	Central Records Project File
Copies to:	State Construction Engineer Contract Administration Division Director Assistant District Engineer - Construction State Materials Engineer District Materials Engineer (when applicable) Financial Management Director

Roadway Design Engineer (for VE Proposals) Contractor FHWA (on PoDI Federal Aid Projects)

1.3.6.2 Supplemental Agreements

When alterations or changes to the original plans and executed contract are required or when extra work needs to be added to the plans and executed contract and for which there are no existing specifications and/or no existing contract pay item(s), a Supplemental Agreement must be executed with the Contractor. The Supplemental Agreement must be approved or an Advance Authority with the Contractor's written acceptance and Commission approval must be obtained (see Section 1.3.6.3) prior to performing the work addressed by within the advance authority/supplemental agreement.

Depending on the dollar amount, nature of the change, and additional contract time, the Supplemental Agreement can be one of four classes. Changes of a minor nature and not exceeding a total cost of \$10,000.00 and any related time based on the added contract dollar amount as outlined within Subsection 108.06 of the Standard Specifications are allowed under Class I Supplemental Agreement. Changes of more significance with cost not exceeding \$100,000.00 and any added time associated with the added work pay items (whether based on the added contract dollar amount or based on the time for the added work items that is determined to be greater than prorated dollar amount) are allowed under a Class II Supplemental Agreement. Time extensions not directly related to new pay item work, changes of materials, and addition of new specifications are only allowed under a Class III Supplemental Agreement. Changes discovered after addendum releases but before bid opening and necessary to make corrections to the project are covered by way of a Class IV Supplemental Agreement. For further details, reference the additional information provided below including the individual sections for each Class of Supplemental Agreement paragraphs provided below.

Class I, Class II, & Class III Supplemental Agreements (and related Quantity Adjustments) will typically be drafted by the Project Engineer. Quantity Adjustments should accompany all Class II and Class III Supplemental Agreements involving contract cost changes. In addition to the information contained herein, detailed steps/procedures associated with considering and making contract changes by way of supplemental agreements (with advance authorities when needed) and quantity adjustments are outlined in the Supplemental Agreement and Advance Authority Flow Charts in this Manual.

Prior to the preparation of a Supplemental Agreement, the Contractor's supporting documentation necessary to justify additional costs and a request for additional time shall be submitted by the Contractor and fully evaluated and be agreed upon by various Departmental personnel - various personnel involvement depending upon the class of the supplemental agreement. The level and detail of the Contractor's supporting documentation will be similar for each class of supplemental agreement. The total allowable markup (which includes Prime Contractor and Subcontractor work, if applicable) for Supplemental Agreement work shall not exceed 20%. The Contractor's material cost submittals should be supported by actual quotes/invoices from the suppliers. Labor and equipment type(s), hourly operating rates, number of pieces and estimated hours necessary to perform the work. Acceptable Contractor's submitted documentation shall be included on the

Supplemental Sheets attached to the Supplemental Agreement. See the example Supplemental Agreement Supplemental Sheet for the expected detailed cost breakdown.

The requirement for the Contractor's detailed cost breakdowns may be waived when a Department's Bid Item History exists for the proposed item(s), and the Contractor's requested price is within 20% of the Department's Bid History cost for that item(s). In any case, the Department reserves the right to request detailed cost breakdowns from the Contractor on any Supplemental Agreement request. The Construction Division will furnish the Districts and Project Offices with a copy of the Department's Bid Item History/contract bid prices upon request.

Regardless of the detailed information contained within the Contractor's submittal, the Department shall develop an independent State estimate document of the cost to complete the added work/contract change. For work involving standard pay items, the independent State cost estimate information may be composed of cost estimate sheet reflecting average bid prices for the standard pay items plus the 20% markups along with any unusual conditions/circumstances added as footnotes thereto. For work involving non-standard pay items, the cost information should be developed based on the State's own efforts in putting together expected cost for the proposed work. This estimate may also entail a cost breakdown into material, labor, equipment, profit and overhead.

The Department must also develop a document reflecting the State's independent estimate for the expected time to complete the added work/contract change if additional time is a part of the Contractor's submittal. The State's independent estimate for a time extension will be based upon production parameters used by Construction Division. The State time estimate will be compared to the Contractor's submittal. If extra time (whether by the prorated amount of time already allowed by the current Subsection 108.06 contract specifications or above and beyond this amount of time) is found warranted/justified, the Supplemental Agreement shall reflect the additional time being granted for the contract work change.

Not only the Contractor's detailed information but also the Department's documented evaluations/recommendations/emails on the added work, cost, and time along with State's independent estimates of cost and time must be included with the Advance Authority and Supplemental Agreements throughout the review stage as well as part of the final executed documents being saved and placed in the Department's project files.

It cannot be over emphasized that Supplemental Agreements must contain all facts relevant to the change being made. In addition to the listed support documentation, consideration must be given to the value of making specification and special provision quotations, photographs, drawings, etc. a part of the agreement so that it may be more understandable to all parties concerned.

Reference the Supplemental Agreement & Advance Authority Flow Charts for more details regarding the Department's evaluation steps of the Contractor's cost and time extension and documentation efforts.

Prior to execution of a supplemental agreement, the Resident or Project Engineer shall verify there are sufficient funds available as per the approved Government Estimate. If the funds within the current approved Government Estimate are insufficient to cover the added work, the Project Office will prepare

a modified Government Estimate and submit it along with the Supplemental Agreement and Quantity Adjustment to the District Office. The District Office will confirm that the Modified Government Estimate is correct and submit it to the Contract Administration Division. The Contract Administration Division Director will check the modified Project Agreement Estimate cost and, on federally funded projects, submit the modified Government Estimate and supporting documents to the FHWA for approval.

The Districts shall be responsible for monitoring the cumulative value of all Supplemental Agreements to the original contract. The cumulative value of the Class I and Class II Supplemental Agreements shall not exceed \$100,000.00 for a particular contract. Should the cumulative value of the Class I and Class II Supplemental Agreements approach \$100,000.00 for a particular project, the District should notify the Construction Division by memorandum. The memorandum should include a request for Commission ratification and a copy of all Class I and Class II Supplemental Agreements for the project that have not been previously ratified. The Construction Division will furnish to the Assistant Chief Engineer – Field Operations the District's memorandum with attachments for inclusion on the Commission agenda. The Commission will then consider ratifying those Supplemental Agreements. Upon ratification, the project may then accumulate an additional \$100,000.00 in Class I and Class II Supplemental Agreements prior to repeating the above process. The District shall not initiate any further changes without the concurrence of the Commission.

When preparing a Supplemental Agreement that contains both participating items and non-participating items on a federally-funded project, such items must be separated and clearly identified on the Supplemental Agreement as Participating and Non-Participating Items.

<u>On Projects of Division Interest (PoDI) Federal Aid Projects</u>, it is required that the FHWA Transportation Engineer be involved with the development and review of the proposed project modifications and related Supplemental Agreement, Advance Authority, and Quantity Adjustment.

The Supplemental Agreement (Form <u>CSD-720</u>) is developed through Change Order Manager. A quick reference guide for Supplemental Agreements is located on <u>MDOT@Work</u>. Once logged into MDOT@Work, proceed to drop down menu under Applications, select Site Manager, then select Getting Started in SiteManager listed under Reports & References Information. The guide provides guidance on what information is to be entered into each field on the Supplemental Agreement and how to navigate through the application to complete the report. As a minimum, the supplemental agreement shall show the reasons thereof, the general nature of the work, the approximate quantities involved and prices to be paid by either unit prices or lump sum, and any extension of contract time as the case may be. Example formats for each Supplemental Agreement Class are shown in the <u>Forms Section</u> of this Manual.

The Contractor's representative authorized to execute a Supplemental Agreement shall be designated as indicated in the Notice to Proceed.

The Project Engineer approves Class I Supplemental Agreements. Districts approve Class II Supplemental Agreements. The Commission approves Class III Supplemental Agreements. The State Construction Engineer approves Class IV Supplemental Agreements.

The District Engineer shall have Departmental signature authority for the Department on all Quantity Adjustments.

On Projects of Division Interest (PoDI) Federal Aid Projects. it is required that Supplemental Agreements and related Quantity Adjustments be submitted to the FHWA for formal approval action.

Class I Supplemental Agreement

Work of a minor nature that requires a Supplemental Agreement may be approved by the Resident or Project Engineer by a Class I Supplemental Agreement, providing the cost does not exceed \$10,000.00 and other procedures/steps as outlined within this Manual are followed.

Prior to preparation of the Class I Supplemental Agreement, the Resident or Project Engineer must completely analyze the proposed contract change. For more details on evaluations and documentation of evaluation efforts, see the preceding paragraphs under <u>Section 1.3.6.2</u> and under <u>Section 1.3.6.1</u> as well as the Supplemental Agreement Flow Chart below. If the Central Office contact(s) does not agree with the District who initiated a change to a contract, it will be incumbent upon the individuals involved to resolve the issue or elevate it to the Chief Engineer for review and final resolution.

The Class I Supplemental Agreements are to be generated in Change Order Manager. See MDOT@Work as described within the preceding guidance outlined in <u>Section 1.3.6.2</u>. Class I Supplemental Agreements are to include the following information:

- 1. The project number and date of award.
- 2. If required, all Central Office contacts such as Materials Division, Construction Division, Roadway Design Division, Bridge Division, etc. shall be listed by name at the bottom of the form. Verbal approval from the District Engineer or the District Engineer's delegated representatives shall be shown.
- 3. The name of the Federal Highway Administration representative who grants verbal approval and the date of approval. (PoDI Project Only)

The information given in the upper part of this Agreement shall contain the following information and shall be presented in a similar format of a Class II Supplemental Agreement:

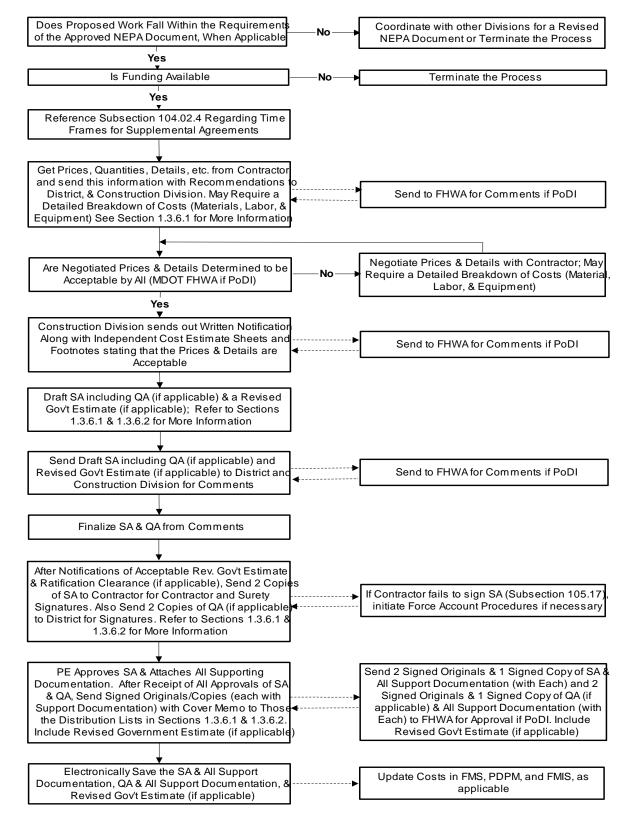
- 1. Request: Stating in detail what change is proposed and the location of the proposed change.
- 2. Reason: Stating sound and factual reasons why the change should be made and how the project will benefit from the change.
- 3. Other: Such as "specification", "time limit", etc.
- 4. Time Extension: Statement addressing time as allowed by Subsection 108.06 of the Standard Specifications.
- 5. Estimate: Summary statement of the increase in cost or the decrease in cost as of a result of the SA work.

6. SA Pay Item. Work will be added to the contract through pay item, Minor Alterations to the Contract. Per the standard specification, Minor Alterations are defined as alterations to the contract that are not addressed in the standard specifications or supplements thereto. The pay item or pay item description must be denoted with the S/A to signify addition by supplemental agreement. An individual alteration shall not exceed \$10,000.

For additional provisions that may be needed, refer to Form <u>CSD-720 Class II Supplemental</u> <u>Agreement</u> in the <u>Forms Section</u> of this Manual.

If the funds within the current approved Government Estimate are insufficient to cover the added work, the Project Engineer will prepare and submit a modified Government Estimate along with the Supplemental Agreement to the District. See additional details within the preceding guidance within <u>Section 1.3.6.2</u>.

Quantity Adjustments are typically not required with each Class I Supplemental Agreement. For further information regarding Quantity Adjustments, see <u>Section 1.3.6.1</u> of this Manual.


The Project Engineer shall have the Department's final signature authority for the Department on Class I Supplemental Agreements. The District Engineer shall have the Department's final signature authority for any related Quantity Adjustment, if required.

<u>On PoDI Federal Aid Projects.</u> after execution by all parties and prior to distribution, FHWA approval must be obtained by submitting two originals and one copy of the supplemental agreement with all supporting documentation with each to the FHWA. The FHWA will retain the copy with supporting documentation for its records and return the two signed originals with supporting documentation to the sender.

Distribution of the executed Class I Supplemental Agreement by the Project Engineer or the District will be made as follows and must be accompanied with a cover memo and supporting documentation for the internal files:

Original: Central Records District Engineer

Copies to: State Construction Engineer Contract Administration Division Director Financial Management Director District Materials Engineer (when applicable) State Materials Engineer (when applicable) Roadway Design Engineer (for VE Proposals) Other Divisions (when applicable) Contractor Surety Project Engineer FHWA (on PoDI Federal-Aid Projects) **Class I Supplemental Agreement**

Class II Supplemental Agreement

The District Engineer has the authority to enter into a Supplemental Agreement to a contract previously approved by the Commission following procedures/steps outlined within this Manual if the Supplemental Agreement involves an additional expenditure not to exceed one hundred thousand dollars (\$100,000.00). This Supplemental Agreement shall be identified as a Class II Supplemental Agreement and may include changes in specifications, design and/or establish new unit prices added/modified work. Changes under a Class II Supplemental Agreement can also include a time extension but only for a time extension directly associated with the added/modified work/work items. Contact with representatives of the Central Office such as Materials Division, Construction Division, Roadway Design Division, Bridge Design Division, etc. shall be required for design changes or specification changes. Approval by the Federal Highway Administration will only be required on PoDI Federal Aid Projects.

Quantity Adjustments are necessary with all Class II Supplemental Agreements. The District Engineer shall have Departmental signature authority for the Department on all Quantity Adjustments. For more information regarding Quantity Adjustments, see <u>Section 1.3.6.1</u> of this Manual.

Prior to preparation of the Class II Supplemental Agreement, the Resident or Project Engineer along with personnel from the District, Construction Division, other MDOT offices, and FHWA (if on a PoDI Federal-Aid project) must completely analyze the proposed contract change. In addition to independent cost analysis, documentation thereof, and reviews and comments on such, time extensions associated with a Class II Supplemental Agreement, specifically in accordance with Subsection 108.06 of the Standard Specifications relative to adding work of such character that it requires more time than indicated by the monetary value of the work added, shall require advanced informal written approval from the Assistant District Engineer - Construction and State Construction Engineer.

For more details on evaluations and documentation of evaluation efforts, see the preceding paragraphs under <u>Section 1.3.6.2</u> and under <u>Section 1.3.6.1</u> as well as the Supplemental Agreement Flow Chart below.

If the Central Office contact(s) does not agree with the District who initiated a change to a contract, it will be incumbent upon the individuals involved to resolve the issue or elevate it to the Chief Engineer for review and final resolution.

A Class II Supplemental Agreement is to be generated in Change Order Manager. See MDOT@ Work as described within the preceding guidance outlined in <u>Section 1.3.6.2</u>. Also, as a quick reference, see the example Form <u>CSD-720</u> Class II Supplemental Agreement in the Forms Section of this Manual.

Any pay item added by Class II Supplemental Agreement must be denoted by an S/A following the pay item to signify addition by Supplemental Agreement.

If the funds within the currently approved Government Estimate are insufficient to cover the added work, the Project Engineer with prepare and submit a modified Government Estimate along with the Supplemental Agreement to the District. See additional details within the preceding guidance within <u>Section 1.3.6.2</u>.

The Project Engineer shall initiate and prepare the draft for Supplemental Agreement along with draft Quantity Adjustment and draft modified (revised) Government estimate if necessary and shall

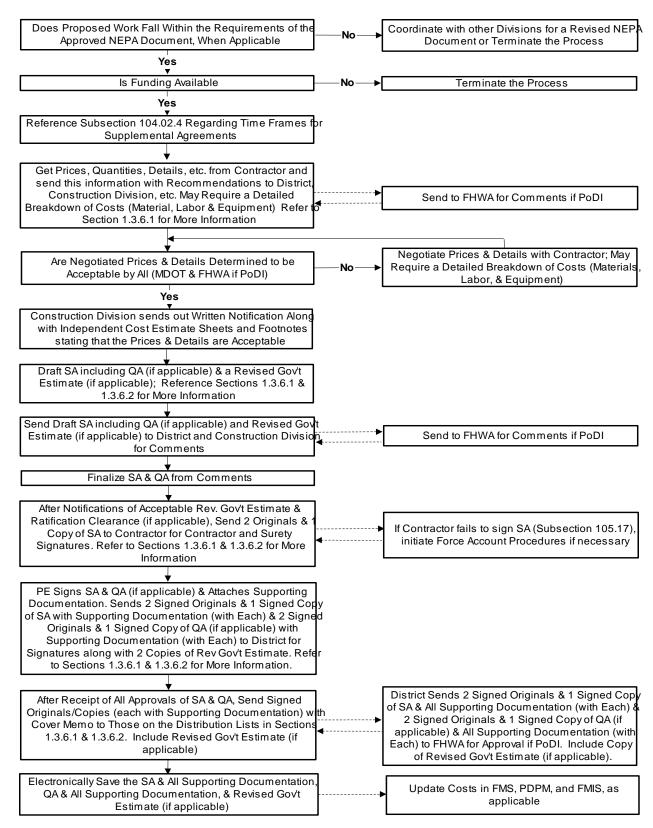
Revised 04/2019

submit these documents to the District Engineer along with all supporting documentation and written recommendations for review and comments. More details covering all of the steps by the Department to finalizing the Supplemental Agreement, Quantity Adjustment, and revised Government Estimate are outlined in <u>Sections 1.3.6.2</u>, <u>1.3.6.1</u>, and the Flow Charts.

<u>On PoDI Federal Aid Projects</u>, after execution by all parties and prior to distribution, FHWA approval must be obtained by submitting two originals and one copy of the supplemental agreement, each with supporting documental, to the FHWA. The FHWA will retain a copy of the Supplemental Agreement with supporting documentation for their records and return the signed originals with supporting documentation to the District for final distribution.

Distribution of the executed Class II Supplemental Agreement, Quantity Adjustment, and revised Government Estimate if applicable will be made as follows and must be accompanied with a cover memo and supporting documentation for all internal files:

Original:	Central Records
•	District Engineer


Copies to: State Construction Engineer Contract Administration Division Director Financial Management Director Executive Director District Materials Engineer (when applicable) State Materials Engineer (when applicable) Roadway Design Engineer (for VE Proposals) Other Divisions (when applicable) Contractor Surety Project Engineer FHWA (on PoDI Federal-Aid Projects)

Advance Authority: In case of an emergency or when time is of the essence, the District Engineer shall have the authority to approve an Advance Authority for Contract Modification. Advance Authority will follow the process, through distribution, outlined above for a Class II Supplemental Agreement, except that the Contractor and the Surety are not required to sign the Advance Authority document. Instead, the Project Engineer must obtain written acknowledgement from the Contractor that the Contractor is in agreement with the contents of the Advanced Authority. Advance acceptance by FHWA is also required on Advance Authority for PoDI Federal Aid projects. For more information, see the additional guidance and the Advanced Authority Flow Chart included in Section 1.3.6.3.

An example of a <u>CSD-720 Class II Advance Authority</u> is included in the <u>Forms</u> Section of this Manual.

The advance authority is not a substitute for the Class II Supplemental Agreement. The Class II Supplemental Agreement must still be prepared and submitted as outlined above.

Class II Supplemental Agreement

Class III Supplemental Agreement

The Commission shall have the sole authority to enter into a Supplemental Agreement to a contract previously approved by the Commission when the Supplemental Agreement involves an additional expenditure over one hundred thousand dollars (\$100,000.00), or a time extension that is not directly related to additional work. This Supplemental Agreement shall be identified as a Class III Supplemental Agreement and may include changes in specifications, design, new or modified work, contract time, and/or establish new unit prices for the added work. Contact with representatives of the Central Office such as Materials Division, Construction Division, Roadway Design Division, Bridge Design Division, etc. shall be required for design changes, new or modified work, or specification changes.

Quantity Adjustments are necessary with all Class III Supplemental Agreements. The District Engineer shall have signature authority for the Department on all Quantity Adjustments. For more information regarding quantity adjustments, see <u>Section 1.3.6.1</u> of this Manual.

Prior to preparation of the Class III Supplemental Agreement, the Resident or Project Engineer along with personnel from the District, Construction Division, other MDOT offices, and FHWA (if on a PoDI Federal aid project) must completely analyze the proposed contract change. In addition to independent cost analysis, documentation thereof, and reviews and comments on such, time extensions associated with a Class III Supplemental Agreement, specifically in accordance with Subsection 108.06 of the Standard Specifications relative to adding work of such character that it requires more time than indicated by the monetary value of the work added, shall require advanced informal written approval from the Assistant District Engineer - Construction and State Construction Engineer.

For more details on evaluations and documentation of evaluation efforts, see the preceding paragraphs under <u>Section 1.3.6.2</u> and under <u>Section 1.3.6.1</u> as well as the Supplemental Agreement Flow Chart below.

If the Central Office contact(s) does not agree with the District who initiated a change to a contract, it will be incumbent upon the individuals involved to resolve the issue or elevate it to the Chief Engineer for review and final resolution.

A Class III Supplemental Agreement is to be generated in Change Order Manager. See MDOT@Work as described within the preceding guidance outlined in <u>Section 1.3.6.2</u>.

Also, as a quick reference, see the example Form <u>CSD-720</u> Class II Supplemental Agreement in the Forms Section of this Manual.

Any pay item added by a Class III Supplemental Agreement must be denoted by an S/A in the pay item number or in the pay item description to signify addition by Supplemental Agreement.

If the funds within the currently approved Government Estimate are insufficient to cover the added work, the Project Engineer with prepare and submit a modified Government Estimate along with the Supplemental Agreement to the District. See additional details within the preceding guidance within <u>Section 1.3.6.2</u>.

The Project Engineer shall initiate and prepare the draft Supplemental Agreement along with a draft Quantity Adjustment and draft modified (revised) Government estimate if necessary and shall submit these documents to the District Engineer along with all supporting documentation and written recommendations for review and comments. More details covering all the steps by the Department for finalizing the Supplemental Agreement, Quantity Adjustment, and revised Government Estimate is outlined in Sections 1.3.6.1, 1.3.6.2, and the Flow Charts.

<u>On PoDI Federal Aid Projects</u>, after Commission approval and prior to distribution, FHWA approval must be obtained by submitting two originals and one copy of the supplemental agreement each with supporting documentation to the FHWA. The FHWA will retain a copy of the supplemental agreement and supporting documentation for its records and return the signed originals with supporting documentation to the Construction Division for final distribution.

Distribution of the executed Class III Supplemental Agreement, Quantity Adjustment, and revised Government Estimate, if applicable, must be accompanied with a cover memo and supporting documentation for the internal files and will be made by the Construction Division as follows:

Original: Central Records District Engineer

Copies to:


b: State Construction Engineer Contract Administration Division Director Financial Management Director Executive Director
District Materials Engineer (when applicable)
State Materials Engineer (when applicable)
Roadway Design Engineer (for VE Proposals)
Other Divisions (when applicable)
Contractor
Surety
Project Engineer
FHWA (On PoDI Federal-Aid Projects)

Advance Authority: In case of an emergency or when time is of the essence, the District Engineer shall sign and forward an Advanced Authority for approval by the Commission. Advance Authority will follow the process, through distribution, outlined above for a Class III Supplemental Agreement, except that the Contractor and the Surety are not required to sign the Advance Authority document. Instead, the Project Engineer must obtain written acknowledgement from the Contractor that the Contractor is in agreement with the contents of the Advanced Authority. Advance acceptance by FHWA is also required on Advance Authority for PoDI Federal Aid projects. For more information, see the additional guidance and the Advanced Authority Flow Chart included in Section 1.3.6.3.

An example of a <u>CSD-720 Class II Advance Authority</u> is included in the <u>Forms</u> Section of this Manual.

The Advance Authority is not a substitute for the Class III Supplemental Agreement. The Class III Supplemental Agreement shall still be prepared and submitted as outlined above.

Class III Supplemental Agreement

Class IV Supplemental Agreement

The State Construction Engineer shall have the authority to enter into a supplemental agreement to a contract awarded by the Commission. This supplemental agreement shall be identified as a Class IV Supplemental Agreement and may include changes in specifications, design and pay items. The purpose of this Supplemental Agreement is to correct errors or omissions that were found in the contract or plans prior to receiving bids and after the addendum date to make corrections.

Advanced coordination and verbal approval from the FHWA will be required before obtaining approval signatures on all PoDI projects.

The State Construction Engineer shall initiate and prepare the supplemental agreement. Any Pay Item changed by a Class IV Supplemental Agreement must be denoted by an S/A following the pay item to signify addition by supplemental agreement. Once prepared, the State Construction Engineer shall submit the supplemental agreement to the Contract Administration Division Director. The Contract Administration Division Director shall submit the supplemental agreement to the Contractor and the Contractor's Surety shall sign the Supplemental Agreement and return it to the Contract Administration Division Director along with the other contract documents.

<u>On PoDI Federal Aid Projects</u>, after the above signatures are obtained, the Construction Division will request and obtain FHWA approval on the Supplemental Agreement.

Following obtaining all signatures, distribution will be performed by Contract Administration Division.

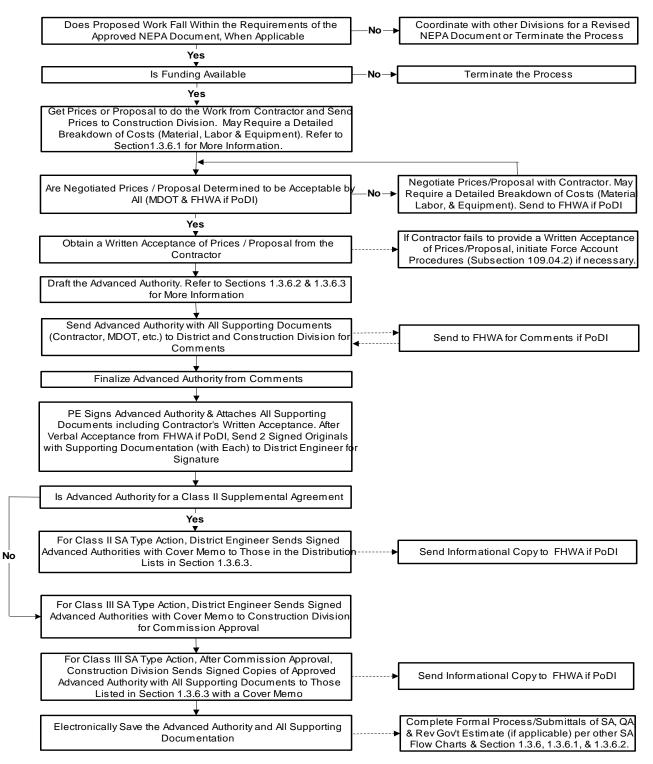
The approved Supplemental Agreement will also be saved within the project files.

1.3.6.3 Advanced Authority

When time is critical, advanced authority may be given to allow work to begin before official approval of project modifications are obtained. Advanced Authority should be submitted in one of two forms. The first form would be using the Supplemental Agreement form with the words "Advanced Authority" written above "Supplemental Agreement". This form can be submitted without the Contractor or Contractor Surety signatures. However, the Project Engineer must obtain written acknowledgement from the Contractor that the Contractor is in agreement with the contents of the advanced authority and submit it along with the Advance Authority. The other form would be in a letter memo form requesting advanced authority. This letter form also requires the written acknowledgement from the Contractor that the Contractor is in agreement with the contents of the advance authority and submit it along with the Advance Authority. The other form would be in a letter memo form requesting advanced authority. This letter form also requires the written acknowledgement from the Contractor that the Contractor is in agreement with the contents of the advance authority letter.

Advance Authority is to closely follow the process, through distribution, outlined above for a Class II and Class III Supplemental Agreements. This includes the early coordination and advance acceptance from FHWA on Advance Authority being issued on PoDI Federal Aid projects.

Advanced authority for a Class II Supplemental Agreement type change only requires the District Engineer's signature, but the District may want the Project Engineers to also sign the request.


Advanced authority for a Class III Supplemental Agreement type change requires the District Engineer's signature and must go before the Commission for approval.

An example of a <u>CSD-720 Class II Advance Authority</u> is shown in the <u>Forms</u> Section of this Manual. The Class III Advanced Authority would be similar.

The Advanced Authorities distribution list for a particular Class Supplemental Agreement shall be the same as the distribution list for that Class of Supplemental Agreement.

Reference the Advanced Authority Flow Chart for more information.

Advanced Authority For Class II and Class III Supplemental Agreements

1.3.6.4 Force Account Work

The Department may direct the Contractor to perform the extra work on a Force Account basis in accordance with Subsection 109.04.2 of the Standard Specifications. Prior to performing work by Force Account the Contractor shall submit a plan of operation for how force account work will be performed including a work schedule, estimated size of the work crew, an equipment list, and anticipated materials to the Project Engineer. The Project Engineer will forward the plan to the District Office and Construction Division for approval. A Force Account Agreement, (Form <u>CSD-001</u>) accompanied by the plan of the work shall be executed by such parties and officials as indicated. Except in cases of emergencies, prior approval of a Supplemental Agreement or Force Account Agreement shall be obtained before any extra work is started.

In case of an emergency, verbal authority confirmed by mail or e-mail shall be obtained from FHWA on PoDI Federal-Aid projects, and the State Construction Engineer, Chief Engineer or Executive Director before starting the work. Force Account Agreements covering emergency work shall be prepared at once and the EMERGENCY so indicated. The words "Emergency Work" shall be noted at the top of the page and the last sentence on the form modified to read, "The above proposal is hereby accepted for construction as verbally agreed to and authorized on (date)."

One approved copy of Form <u>CSD-001</u> is to accompany the Force Account Statement (Form <u>CSD-202</u>) when submitted for payment. Form <u>CSD-202</u> and supporting documents shall be submitted promptly with the next current monthly estimate after the work covered in the Agreement has been completed. The Department will make payments in the manner specified below, and this payment will be full compensation for the prosecution of the work performed on this basis.

(a) **Labor.** For all authorized labor and foremen employed on the force account work, the Department will pay the actual rate of wage verified by certified payrolls. The wages shall be comparable to the wages paid by the Contractor for work of like nature for each hour that the said labor and foreman are actually engaged in such work, unless otherwise agreed upon in writing before the start of the force account work. Hourly wages for salaried employees will be based on a 40-hour work week.

The Department will allow overtime work only if authorized by the Engineer prior to the start of the force account work.

An amount will be added equal to twenty percent (20%) of the sum thereof

- (b) **Bond Insurance and Tax.** The Department will pay the actual costs for property damage, liability and workers' compensation insurance premiums, unemployment insurance contributions and social security taxes on the force account work. The Contractor shall furnish satisfactory evidence of the rate or rates paid for the bond, insurance and tax.
- (c) **Materials.** All materials claimed must be supported by invoices or sworn statement substantiating the quantities and prices claimed. In NO EVENT shall the prices claimed on Form <u>CSD-202</u> exceed those agreed to on Form <u>CSD-001</u>; neither shall they exceed the prices shown by the supporting invoices or sworn statements. It is the Contractor's responsibility to ascertain the price of materials prior to entering into the agreement. All prices must exclude the credit allowed for returned material.

Where manufacturers or materials dealers, whether wholesale or retail, allow a discount on invoices for materials purchased if payment is made by a specified date or within a specified time, the discount shall be deducted from the invoice, even if the Contractor fails to take advantage of this discount.

Sales tax may be claimed by the Contractor on materials and freight provided the Contractor paid sales tax on these items. However, the 15% allowable on "Materials, Freight, and Handling" is to be charged on the net amount on invoices.

(d) **Equipment.** Equipment used for force account work shall be of sufficient size and type necessary to perform the required work in an economic and expeditious manner. The Contractor must provide the manufacturer, make, model, year, type of fuel and other necessary information to determine proper hourly payment rates. Subject to advance approval of the Engineer, actual transportation cost for a distance of not more than 200 miles will be reimbursed for equipment not already on the project.

For equipment authorized by the Engineer for use on the force account work, the Engineer will use the equipment rental rates from the "Rental Rate Blue Book" as published on the Equipment Watch website www.equipmentwatch.com for the time period the force account work is authorized to determine payment to the Contractor. The maximum allowable rates are determined as follows:

- 1. The hourly equipment rate will equal the monthly rate shown divided by 176. The hourly rate is then multiplied by adjustment factors for age and region. Do not use the weekly, daily, or hourly rates shown in the table.
- 2. The hourly operating cost will be the estimated operating cost shown in the Rental Rate Blue Book table. The hourly estimated operating cost shall include all costs associated with routine maintenance and servicing, including but not limited to: fuel, lubrication, filters, blades, belts, pumps, lines, hoses, teeth, tires, tracks and all other incidentals necessary to operate and maintain the equipment. The Department will pay the estimated hourly rates for the actual time that the authorized equipment is in operation. Do not use the weekly, daily, or hourly rates shown in the table.
- 3. The hourly working rate equals the adjusted hourly equipment rate plus the estimated hourly operating cost which is shown as the total under the FHWA Rate column.
- 4. The idle or standby rate will equal the FHWA Rate minus the hourly Estimated Operating Costs times fifty percent (50%).
- 5. These rates include the basic machine plus any necessary attachments.

Idle or standby rates shall apply when equipment is not in operation and is approved by the Engineer to standby for later use to complete the work. In general, idle or standby rates shall apply when equipment is not in use, but will be needed again to complete the work and the cost of moving the equipment will exceed the accumulated standby cost. If the idle standby cost should exceed the equipment moving cost to or from the work site, the Contractor will be entitled to the moving cost only. Idle or standby rates will be used under the following conditions:

- 1. The equipment is totally dedicated to the force account work and not used intermittently on other work.
- 2. Idle or standby cost will be considered only after equipment has been operated on force account work.
- 3. Idle or standby cost will be not be paid for more than eight (8) hours in a day or 40 hours in a week.
- 4. The sum of idle or standby time and operating time shall not exceed eight (8) hours per day.
- 5. Idle or standby payment will not apply to days not normally considered to be work days such as holidays, weekends, or days of inclement weather when no other work is taking place.

The Department will not pay for idle or standby time when equipment is inoperable, for time spent repairing equipment, or for the time elapsed after the Engineer has advised the Contractor that the equipment is no longer needed. The Department will determine if it will be more cost effective to pay idle time on approved equipment on site or for multiple mobilizations.

If equipment is needed, which is not included in the Rental Rate Blue Book, the Department and Contractor will agree upon reasonable rental rates in writing before the equipment is used.

All equipment shall be subject to approval from day to day in accordance with the requirements of Subsection 108.05.

- (e) **Rented or Leased Equipment.** The rates for equipment shown on Form <u>CSD-202</u> shall not exceed that shown on Form <u>CSD-001</u>. This rate includes 10% for fuel, oil, grease, etc., but not the operator. List on the time roll the hours each piece of equipment was used on the respective dates.
- (f) **Daily Records.** The Contractor and the Engineer, or their representatives, shall compare records at the end of each work day of the work performed and shall indicate agreement by signature on such form(s) provided by the Department
- (g) **Statements.** The Department will not make payment for work performed on a force account basis until the Contractor has furnished the Engineer with duplicate certified and itemized statements of the cost of force account work detailed as follows:
 - 1. Name, classification, date, daily hours, total hours, rate, and extension for each laborer and foreman;
 - 2. Designation, dates, daily operating and standby hours, total hours, rental rate, and extension for each unit of machinery and equipment;
 - 3. Quantities of materials, prices, and extensions;
 - 4. Transportation of equipment and materials; and
 - 5. Cost of property damage, liability and workers' compensation insurance premiums, unemployment insurance contributions and social security tax.

The Contractor shall provide support for all statements with receipted invoices for all materials used, including transportation charges. The Contractor's authorized representative shall date and sign the statements

(h) Miscellaneous. The Department will allow lodging costs only if authorized by the Engineer prior to starting the force account work. Lodging costs must be verified by paid receipts. Costs will not be allowed for meals or travel to and from the jobsite. No allowance will be made for general superintendence, the use of small tools, or any other costs for which no specific allowance is herein provided.

When making extensions of Force Account Statements, ALL FRACTIONS of cents shall be rounded to the nearest cent (\$0.01). No line entry is available for profit. Markup on materials and labor is considered the profit for Force Account Work.

1.3.7 Claims

It is essential that policies and procedures for processing Contractor's objections to effects of acts or conditions which arise during construction and for processing Contractor's claims for additional compensation or adjustment to contract time be performed uniformly throughout the Department. On projects that are designated as **<u>FHWA PoDI</u>**, it is required that FHWA notification and coordination take place.

It is the responsibility of the Contractor to provide reasonable written notice when conditions are believed to require a change to the Contract. The Department will only consider requests for changes to the Contract when the Contractor follows the notification procedures in Subsection 104.02.4 of the Standard Specifications. This section also outlines the timeframe and content for the written notification by the Contractor and the written acknowledgement and response by the Engineer.

When a change is necessary, the Engineer will make appropriate adjustments to the Contract price and time, if warranted, in accordance with the provisions set forth in the Contract. If the Contractor disagrees with the Engineer's decision or does not agree with the Contract adjustments, the Contractor may pursue the issue as a claim in accordance with Subsection 105.17 of the Standard Specifications.

The Contractor claim submission is a two-part process. Within 30 calendar days of receiving the Engineer's decision as outlined in Subsection 104.02.4 of the Standard Specifications, the Contractor must provide the Engineer with a written notice of intent to file a claim on the Notice of Intent (Form CSD-145) available from the Project Engineer or on the MDOT Construction Division webpage. Within 60 calendar days after submitting the notice of intent to file a claim or within 60 calendar days of completing the disputed work, whichever is later, the Contractor shall submit a complete claim package to the Project Engineer. At a minimum, the following information shall be submitted with each claim:

- 1. A completed Notice of Claim Form (CSD-155), which form may be obtained from the Project Engineer or on the MDOT Construction Division webpage.
- 2. A detailed factual statement of the claim for additional compensation, time or both, providing all necessary dates, locations, and items of work affected by the claim.
- 3. The date on which the facts were discovered that gave rise to the claim.
- 4. The specific provisions of the Contract that support the claim and a statement of the reasons why such provisions support the claim.
- 5. If an extension of contract time is sought, a schedule analysis as required by the Engineer.
- 6. If additional compensation is sought, the amount and specifics of the compensation.

Once the Contractor properly files a claim, provides all necessary documentation, and, if requested, allows for reasonable and timely access to the Contractor's books and records, the Department will review the claim and render a written decision to the Contractor to either affirm or deny the claim, in whole or in part. The Department's decision will be provided within 90 calendar days after receipt of all requested information, including any audit of the Contractor's books and records, or at such time agreed upon by the parties.

If the Department decides to affirm the claim, an adjustment will be made as applicable. If the Department denies the claim, the Contractor may either accept the Departments decision as final, file a claim with the State Highway Arbitration Board or file a lawsuit, whichever may be appropriate based on the monetary demand made by the Contractor. Strict compliance with the claims process described in this Subsection 105.17 of the Standard Specifications is a condition precedent to the filing of any arbitration claim or lawsuit and failure to follow any of the requirements will be grounds for dismissal of the arbitration or lawsuit.

All claims filed against the Department may be subject to audit by the Department's internal Audit Division, any consultant retained by the Department to review the Contractor's claim, and/or FHWA at any time following the filing of such claim. The audit may begin upon a 5-day notice to the Contractor, subcontractor or supplier, or at such time agreed to by the parties. The Contractor, subcontractor and/or supplier shall cooperate with the auditor and/or consultant. Failure of the Contractor, subcontractor and/or supplier to maintain and retain sufficient records to allow the Department's auditor and/or consultant to verify the claim shall constitute a waiver of that portion of the claim that cannot be verified and shall bar recovery thereof. The Contractor, subcontractor and/or supplier shall provide the auditor and/or consultant with a minimum of the following documents:

- 1. Daily time sheets and foreman's daily reports.
- 2. Union agreements, if any.
- 3. Insurance, welfare and benefits records.
- 4. Payroll register.
- 5. Earnings records.
- 6. Material invoices, purchase orders and all material and supply acquisition contracts.
- 7. Equipment records (list of company equipment, rates, etc.).
- 8. Vendor rental agreements and Subcontractor invoices.
- 9. Canceled checks (payroll and vendors).
- 10. Job cost report.
- 11. Job payroll ledger.
- 12. General ledger, general journal (if used) and all subsidiary ledgers and journals together with all supporting documentation pertinent to entries made in these ledgers and journals.
- 13. Cash disbursements journal.
- 14. Any other documentation that the auditor and/or consultant deems necessary to the review of the claim.

1.3.8 Estimated Final Quantities and Materials Certification

Standard procedures for the collection and distribution of the Project Engineer's Statement of Estimated Final Quantities and Certified Tests of Materials (Form TMD-725) shall be performed as stated below. In order to expedite the materials certification process, there are several tasks that should be completed <u>throughout the duration</u> of the project in order to ensure that Form TMD-725 is easily processed.

- 1. As materials are placed on a project, the Project Engineer should contact the District Materials Engineer to discuss the materials associated with a contract. Every project has unique aspects that will require editing of the materials and frequencies associated to the contract's pay items. This materials editing process will help to minimize discrepancies on an estimate as a project progresses.
- 2. The Project Engineer shall generate the Modified Sampling Checklist to help track testing progress. The Modified Sampling Checklist can be run at any time throughout the life of the project providing an update on project samples.
- 3. While it may be necessary to override some discrepancies during the course of a project, reoccurring materials discrepancies are a signal that the material and/or testing frequency of a pay item may need to be adjusted. The Project Engineer should contact the District Materials Engineer to resolve this type of issue.
- 4. Notify the District Materials Engineer upon completion of major items of work so that the District Materials Engineer may remove any test requirements for materials that are not to be used on the project.

<u>Materials Certification</u>. Statements on Form TMD-725 must be completed and properly distributed for issuance of the Certification of Materials and Tests, which is required before the work is officially accepted and final payment is made. Form TMD-725 can be generated in SiteManager.

The Project Engineer is to distribute Form TMD-725 prior to the final estimate. It is recommended that Form TMD-725 be submitted to the State Materials Engineer at the same time that the initial closing documents are submitted to Contract Administration for initial review following the final inspection. To monitor the project clearance process, the date of the final inspection, the date that Form TMD-725 is received by the Materials Division, and the date of the Final Estimate are tracked by CATS and/or SiteManager for better management of project closings. The statement of the estimated quantities is to be as accurate as possible when submitted to the State Materials Engineer.

<u>**Project Engineer's Procedures.</u>** To prevent unnecessary delay in obtaining project clearance, the Project Engineer is to comply with the following procedures:</u>

- 1. Maintain a file for each project including the Modified Sampling Checklist and all supporting documents. The Project Engineer should keep a listing of the quantity of materials tested for the project and the quantity of material shown on the most recent Contractor's monthly estimate. The Project Engineer must be sure that quantities are correct and follow-up on any variations within a reasonable period of time.
- 2. Have the required certificates and/or certified test reports in hand prior to allowing the materials to be incorporated into the project. Any work performed prior to approval of materials will be the sole responsibility of the Contractor. Any Certificate of Compliance or Certified Test Report which does not contain the information required by the Standard Specifications shall be promptly

rejected. The Project Engineer shall strictly adhere to the requirements of the Standard Specifications, particularly the requirement that "payment for work will not be made until proper certification has been received."

3. Address the corrective action taken regarding failing samples by notifying the District Materials Engineer, in writing, as soon as possible after receiving test results that indicate noncompliance with the specifications. SiteManager Template CPE 905 should be used to <u>document</u> project variations such as failing materials or insufficient testing and provide recommendations as to the disposition of the materials if they were placed the project.

For many items, a Project Engineer's certification serves as documentation for materials requested, tested and, accepted when the material is incorporated into the project. Refer to S.O.P. TMD 20-04-00-000 (contained in the *Inspector's Handbook*) to determine which materials require certification.

- 4. Acceptance of materials used in the construction of project offices, maintenance buildings, shops, and additions and alterations to existing buildings should be in accordance with Section 4.1.3 of the Materials Division Inspection, Testing, and Certification Manual (MITCM).
- 5. The Project Engineer should generate, sign and submit for approval to the State Materials Engineer Form TMD-725. The SiteManager Form TMD-725 should have the "Total Rem." column cleared prior to submittal. Please note that any Form TMD-725's submitted without this column being cleared will be returned for editing. A helpful tool for use when preparing Form TMD-725 is the Test Discrepancy Checklist (TSTKSCKL) available from the SiteManager Materials Process List. If there are variations on project materials, Form TMD-445 (available in Appendix A of the Materials Division Inspection, Testing, and Certification Manual) should be submitted to the District Materials Engineer.
- 6. Advise the Contractor, in writing, of the Materials Division's response to Form TMD-725 regarding any shortages of test reports, certificates, etc.

District Materials Engineer's Responsibilities. The District Materials Engineer (DME) shall assist the Project Engineer with the contract materials setup and maintenance for all SiteManager contracts. All pay items have a group of standard materials in SiteManager. Upon activation of a new contract in SiteManager, the DME must generate the materials for the project. The Outstanding Items List should be run before generation of the Contract Materials. The DME should contact the Materials Division to have materials associated to any new or existing contract pay items before the contract materials are generated. It is the DME's responsibility to ensure that materials that will not be used on a project are removed from appropriate contract pay item(s) and that the testing frequencies are adjusted in accordance with MDOT specifications and contract documents.

At project closeout, if there are any variations on a project, the DME will receive from the Project Engineer a signed Form TMD 445. Upon completion of review of Form TMD 445, if the District Materials Engineer concurs the Project Engineer's disposition of the variations, the document shall be signed and submitted to the State Materials Engineer, as indicated in Subsection 4.1.1 of the Materials Division Inspection, Testing, and Certification Manual. The District Materials Engineer should also use the "Find Sample" report function in SiteManager to check for any outstanding unauthorized sample records on a project. All project samples should be authorized at project closing.

<u>Material References.</u> Listed Below are reference documents available at either the <u>MDOT@Work</u> intranet site or at <u>www.GoMDOT.com</u> under the Materials Division that provide helpful information for the materials certification process.

- 1 MDOT Inspectors Handbook (Grey Book)
- 2 Materials Division Inspection, Testing, and Certification Manual (MITCM)
- 3 MDOT List of Approved Products and Producers/Suppliers
- 4 MDOT Field Manuals for Concrete and Hot Mix Asphalt

1.3.9 Permits and Utilities

Other Divisions Rules are related to the provisions of Subsection 107.04 of the Standard Specifications, Restoration of Surfaces Opened by Permit. They are as follows.

The below-listed Maintenance Division Rules can be located on <u>MDOT@Work</u> under <u>Maintenance</u> <u>Division Rules</u> and should be consulted for information pertaining to permits for utilities, driveway and street connections, etc.

941-7501-04001	Underground Utility Crossings
941-7501-04013	Driveway & Street Connections, Median Openings, Frontage Roads
941-7501-04015	Parallel Utility Lines and Overhead Crossing Encroachment Permits

Other Divisions Rules are related to Subsections 107.18 and 107.19 of the Standard Specifications. The Right of Way Operations Manual should be consulted for information pertaining to utilities and right of way.

1.3.10 Payment for Laboratories

There are two conditions under which a Contractor is required to furnish laboratory space and utilities for the exclusive use of the Engineer in housing and using equipment necessary to carry on required tests. These conditions are:

1. When the Engineer undertakes to make inspection at the source of a material or product produced for the Contractor by a producer who is not a party to the contract for the pay item for which the material or product is produced.

In such case, no payment is to be made for the required laboratory.

2. When a field laboratory is required by the Engineer, furnished by the Contractor, and used solely for housing and using equipment necessary to carry on required tests of materials.

Under this condition, measurement and payment for the field laboratory is to be made under the provisions and requirements of Section 621 of the Standard Specifications.

In general, the Contractor will be required to provide one or more field laboratories on most, if not all, grading projects. Measurement and payment is to be made under the provisions and requirements of Section 621 of the Standard Specifications.

A laboratory at the plant of a producer from whom the Contractor purchases a product is not eligible for payment unless all of the following conditions are met.

- 1. The plant is not for the production of bituminous mixture(s) for the Contractor;
- 2. The laboratory of such a producer is adequate for plant inspections and tests, and meets the requirements for a field laboratory as set out in Section 621 of the Standard Specifications;
- 3. The Engineer determines that it is reasonable and practicable to use and does use such laboratory in lieu of requiring a field laboratory at some other location; and
- 4. The Contractor makes all the arrangements with the producer for the Engineer to have exclusive use of the facility and utilities as provided in Section 621 of the Standard Specifications.

Other laboratories required by the Engineer, furnished by the Contractor, and used as intended, will be measured for payment under the provisions and requirements of Section 621 of the Standard Specifications.

Duplication of payment will not be made to the same Contractor for concurrent use of the same laboratory for work under separate contracts. However, when all work for which a field laboratory was required under an earlier contract has been completed, the laboratory may be required and measured for payment under an incomplete project when its use is deemed to be necessary.

The Project or Resident Engineer having more than one (1) contract for work on projects in the same general vicinity by the same Contractor should consider suitability of combination use of the laboratory facilities. For example, if a Contractor should have a large project and one or more smaller projects in the same vicinity and the necessity for use of the laboratory begins at about the same time on the large project and one or more of the smaller projects, the laboratory should be required on the contract having the longer duration and should be used in combination, if practicable, with testing on the other project(s).

In the event a determination can be made during the field review phase that a field laboratory is not to be required and paid for, but will be furnished on the project by the Department, such determination should be made and the plans properly developed accordingly.

1.3.11 Safety

All MDOT project staff are required to comply with the MDOT Safety Manual. Since Contractor workers and MDOT inspectors are frequently exposed to the hazards of the traveling public, they need to be clearly visible at all times. The Code of Federal Regulations CFR 23 Part 634 final rule was adopted November 24, 2006 with an effective date of November 24, 2008. This rule requires that all workers within the right-of-way shall wear high-visibility safety apparel in accordance with the requirements of Section 6D.03 of the MUTCD. Workers are defined as people on foot whose duties place them within the right-of way of highways, such as highway construction and maintenance forces, survey crews, utility crews, responders to incidents within the highway right-of-way, and law enforcement personnel when directing traffic, investigating crashes, and handling lane closures, obstructed roadways, and disasters within the right-of-way.

1.3.11.1 Traffic Control Management

Prior to or at the Preconstruction Conference the Department will designate a responsible person at the project level to monitor the Contractor's compliance with the traffic control plan, including plan sheets, contract specifications, and public outreach efforts – including those items referenced within the Transportation Management Plan prepared by the Construction Division for all projects identified as significant during the project development stage in accordance with 23 CFR 630. The Contractor shall designate a Traffic Control Supervisor (TCS) who will be responsible for monitoring and maintaining the effectiveness of the plan. The Contractor shall also designate a substitute who is authorized to act in the absence of the TCS. The TCS and substitute must be able to be reached at all times when not on the Project. The Contractor may assign a Traffic Control Technician (TCT) to assist the TCS with traffic control related activities on the project. The TCS shall be responsible for the overall traffic control management on the project which includes that of subcontractors. The Engineer shall be furnished with the telephone numbers and email addresses of the Contractor's TCS and TCT.

A TCS or TCT shall be assigned to only one (1) project. When special conditions exist, such as two (2) adjoining projects or two (2) projects in close proximity, the Contractor may request in writing that the State Construction Engineer approve the use of a TCS or TCT for both projects.

Prior to the commencement of work on the project, the Contractor shall submit proof of current certification (within the past 4 years) of the TCS and the TCT as applicable. Certification as either a TCS or a TCT may be obtained by one of the following methods:

- a) American Traffic Safety Services Association (ATSSA),
- b) Construction industry association training recognized by the Department, or
- c) Traffic Control Supervisor or Traffic Control Technician training conducted by the Department.

The Department reserves the right to remove a TCS or TCT from a project for a failure to satisfactorily comply with the Plans or specifications. In the event that the Contractor's TCS or TCT is not meeting the requirements of the Plans or specifications, the Project Engineer will notify the Contractor in writing, describing the TCS or TCT's deficient performance. If the deficient performance should continue, the Department may take any or all actions listed below:

- a) stop all work requiring traffic control,
- b) require the Contractor to designate a new TCS or TCT, or
- c) remove the TCS or TCT from the project; this person shall not be eligible to be named on any other project for a 6-month period from the date of removal.

The Department may temporarily suspend all activities on the project with the exception of erosion control and necessary maintenance of traffic until a new TCS or TCT is assigned.

The Engineer, or other appropriate personnel as required, will review and analyze accidents to determine if corrective action to the Traffic Control Plan is needed. In the event corrective action is indicated, the Contractor shall proceed immediately with same.

1.3.11.2 Barricades, Warning Signs & Flaggers

On or about the effective date of the Notice to Proceed, the Engineer will make an inventory of all traffic service devices with adequate description of each sign, post, message, signal and other devices as a basis for replacement in kind. A copy of the inventory, dated, identified, and signed will be forwarded to the District and Contractor. Prior to performing work on the project, the Contractor shall make the necessary arrangements to prevent damage or loss of signs and other traffic control devices. Those which cannot be left in their existing positions shall be removed, stored or reinstalled at locations approved by the Engineer. At project completion, the pre-work inventory will be compared to the finished project. Any damaged or missing signs should be replaced by the Contractor at no cost to the State.

The provisions and requirements for protection of the public by the Contractor of furnishing, installing and maintaining barricades, warning signs and devices and flaggers are set out in Subsection 107.10 of the Standard Specifications. It is the responsibility of the Resident Engineer to see that such protective devices are provided and properly positioned.

Subsection 107.10 of the Standard Specifications also requires that protective devices shall conform to the minimum requirements as set out in the MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES FOR STREETS AND HIGHWAYS (MUTCD), PART VI (Latest Edition). The Resident Engineer may approve special safety devices proposed by the Contractor to protect the traveling public against special conditions or hazards, provided such devices are not in conflict with those specified in the contract, including the referenced MUTCD.

Due to the necessity of reconstructing or widening and resurfacing older roads, contracts require that all traffic be maintained through the project. For these projects, the Resident Engineer should give special consideration to preserving, replacing or substituting such protective devices which were in existence prior to the reconstruction. For example, when an existing surfaced highway is to be widened and resurfaced, centerline stripes and no-passing stripes are obliterated by leveling courses or overall courses. Edge stripes are likewise obliterated. It is also necessary sometimes to remove or relocate informational signs in order to reconstruct the shoulders and upper slopes.

Prior to any portion of a no-passing stripe being obliterated by construction, DO NOT PASS and NO PASSING ZONE signs shall be placed at the beginning portion of the no-passing stripe, and a PASS WITH CARE sign placed at the end of the no-passing stripe. A sufficient number of such signs shall be provided, erected and maintained to properly mark the beginning and ending of all no passing zones for each direction of traffic.

The need for other signs or protective devices may exist for special situations depending upon the physical features of a given project and the sequence and nature of the Contractor's operations. Careful attention should be given to each such situation on all projects and the Contractor should be required to provide all protective devices that are essential to the convenience and safety of the public, as contemplated under the contract.

The MUTCD provides good coverage for most situations; however, the Traffic Engineering Division should be consulted for special situations or when some question arises as to the most effective protective devices to be used.

All applicable signs and other protective devices are to be maintained by the Contractor until their use is no longer needed and then immediately removed, or until replaced with permanent markings, signs or other devices; or unless otherwise provided until final acceptance of the project.

Flaggers shall have proof of certification and a valid identification available while performing flagging duties. Failure to provide a certified flagger or produce evidence of certification shall be reason for the Engineer to suspend all work associated with the flagging operation. Flagger certification can be obtained by one of the following methods:

- a) American Traffic Safety Services Association (ATSSA),
- b) Construction industry association flagger training recognized by the Department, or
- c) Flagger training conducted by the Department.

Re-certification as a flagger will be required every four (4) years.

1.3.11.3 Forest Protection

The Department and the U.S.D.A. Forest Service have executed a "Memorandum of Understanding on Procedures Related to Highways Over National Forest Lands." Excerpts from the memorandum which are applicable to the Project Engineer and the Project Engineer's staff are as follows.

- I. <u>Pre-Design</u>
 - A. The State will notify the Forest Service at least 30 days prior to commencing location surveys for roads crossing National Forest land.
 - B. The Forest Service will:
 - 1. Provide available data and information on such matters as land corner locations; property line boundaries, maps, and project access routes.
 - 2. Explain Forest Service and State responsibilities pertaining to fire prevention and suppression during project life.
 - 3. Review proposed requirements and limitations related to clearing survey lines and material source investigations as they affect Forest Service policies.
 - 4. Provide available data, information, concerns, and any mitigation measures necessary to minimize impacts to Potential Endangered and Threatened Species (PETS) within the project area.

II. Design

- A. The State will:
 - 1. Furnish the Forest Supervisor with two copies of the project preliminary design data as soon as available.
 - 2. Invite the Forest Supervisor to go on the plans-in-hand field inspection. Notify Forest Supervisor of the date of inspection at least one week in advance.
- B. The Forest Service will advise the State of Forest Service input resulting from plans-in-hand field inspection within seven days after the inspection.
- III. Construction and Maintenance

- A. The State will:
 - a. Control construction under its contracts to assure work is in accordance with approved plans and agreements.
 - b. Have the District Engineer contact the District Ranger for agreement prior to starting work under changed conditions which develop prior to or during construction on National Forest land.
 - c. Utilize measures to control Invasive Species within the project area.
- B. The Forest Service will consult only with the District Engineer or the District Engineer's designated representative on matters pertaining to project construction.

1.3.12 Opening Roads to Traffic

Prior to officially opening a section of road to traffic, adequate regulatory, warning, directional and informational signs and markers must be in place and operational. Preferably one week prior to opening a section of roadway to traffic or anytime a major change in traffic alignment occurs, the Project Engineer will notify Public Affairs Division. Public Affairs Division will in turn advise the public of changes in traffic conditions.

1.3.13 Labor Questionnaire - Form CAD-440

On a monthly basis, the Project Engineer or the Project Engineer's representative will perform labor interviews on non-supervisory employees of the Prime Contractor and Subcontractors. This interview will be documented of Form <u>CAD-440</u>, this form is shown in the <u>Forms Section</u> of this Manual. Once all employees have been interviewed, the monthly interview process may cease. A minimum of 1 labor interview per subcontractor will be required.

1.3.14 Disadvantaged Business Enterprise Participation

Projects that contain a Disadvantaged Business Enterprise (DBE) Goal will include OCR 485 (List of Firms Submitting Quotes) and Form OCR-481 (Disadvantage Business Enterprise List) in the Contract Documents. These forms will be completed by the Contractor at the time of bidding. A Form OCR-481 will be completed for each DBE Subcontractor to be used on the project along with a list of items of work to be completed by that subcontractor. The Resident Engineer is responsible for insuring that the DBE Subcontractor performs the work identified on the OCR-481 form.

The Prime Contractor is required to submit Form <u>OCR-484</u> to the Project Engineer no later than the last day of each month. This form certifies payments to all Subcontractors and shows all firms even if the Prime Contractor has paid no monies to the firm during that estimate period (negative report). The Project Engineer will attach this form to the monthly estimate before forwarding the estimate to the Contract Administration Division for processing.

During the performance of DBE work, the Project Engineer is to complete and submit Form <u>OCR-483</u>, Commercially Useful Function Performance Report. This report should be completed when a DBE completes 50% of the work, or whenever practices are discovered or suspected to be out of compliance with the approved program. Guidance for completion of this form is available in the Office of Civil Rights Division.

Form <u>OCR-482</u> has been developed to verify compliance with the contract DBE requirement. At the end of the job, the Prime Contractor will submit this form to the Project Engineer before the final estimate is paid and the project is closed out. This form certifies payments to all DBE Subcontractors over the life of the contract.

1.3.15 Assessment Report for Working Days - Form CSD-765

This report is completed within SiteManager and generated as Form <u>CSD-765</u> at the end of each month. Each report is to cover the working days during the month. The form is shown in the Forms Section of this Manual. After completion, the report is to be sent to the Contractor for review. Any discrepancies should be handled in accordance with Subsection 108.06.1.2 of the Standard Specifications.

1.3.16 Preconstruction Conference

A preconstruction conference shall be held prior to commencing any work to discuss essential matters pertaining to the prosecution and satisfactory completion of the work. They can be held in the Project Engineer's office, the Contractor's office, on the project, or any other convenient place where a discussion of the work can be held. The Contractor in conjunction with the Engineer will schedule the date of the preconstruction conference. The Engineer will consult with the District Construction Engineer, Construction Division Area Engineer and FHWA on PODI projects to insure they are available before confirming the date. The Contractor will then advise the Project Engineer in writing as to the date of the conference. The Engineer will, as appropriate, notify Bridge Division, Contract Administration Division, Civil Rights, Geotechnical Branch, Right-of-Way Division, Traffic Engineering, Consultants and all utility companies which are involved of the time and location of the conference so that each may schedule a representative present.

If not provided by the Department, the Contractor shall furnish a progress schedule prior to or at the pre-construction conference, as outlined in 1.3.17 Progress Schedule and Contract Time of this Manual.

At these conferences, technical information and special features of the project should be explained. During the preconstruction conference, if construction staking is by MDOT, the sequence and manner of staking the work should be discussed and mutually agreed upon. The controlling features of material sources, any haul roads, land ownerships, and special drawings can be discussed. The type, number, and placing of construction signs, and the sequence and scope of the traffic control plan should be discussed and agreed upon. Any applicable permits, such as Department of Environmental Quality, Corp. of Engineers, etc., should be discussed. Any questions concerning utilities should be answered. Questions & Answers submitted on-line during advertising should be reviewed.

Any other special features of the project should be discussed. For special features of a particular project, consideration should be given to whether the Contractor is familiar with the type of work included in the contract or whether the Contractor has not been performing for the Department, work of the particular type called for in the contract. Any new or revised specifications or plan requirements included in the contract should be discussed in each instance.

Minutes of the conference are to be prepared and signed by the Resident or Project Engineer. The original, signed copy is to be retained in the project files and a copy attached to the Diary for that date. Copies of the minutes of the conference are to be furnished to the District Engineer, the State

Construction Engineer, and the Contractor and to any other Division or party whose representative in attendance requests a copy of the minutes.

Upon receipt of the copy of the minutes by the District and Construction Division, a review should be made by the District and the Construction representatives present at the conference as to the adequacy of the minutes for coverage of the pertinent or special details discussed. If corrections or amendments are necessary, they should be discussed with the Project Engineer and appropriate entries made as a separate amendment to the initial minutes and attached thereto as "amendments" as of the relevant date.

The preconstruction conference and the record thereof should reflect a mutual understanding by all parties.

1.3.17 Progress Schedule and Contract Time

<u>General.</u> The assessing of contract time and subsequent assessment of liquidated damages under contracts is a very important matter to all parties concerned. A fair and uniform interpretation of the governing specifications has to be applied by the Project Engineer on a day-to-day basis. It is the intent of this section of the Manual to explain the mechanics of the procedure in assessing contract time. The Project Engineer should study very carefully all of the provisions for assessing time as contained in the contract documents.

<u>Contracts With Two Part Bidding</u>. Contracts containing A+B or A+C requirements use a two-part contract bidding method consisting of the Contract amount (A) and the total number of calendar days to the Specified Completion Date (B) or working days (C) proposed by the Bidder to complete the work. The Contractor's bid establishes the contract time or the Specified Completion of the work. A disincentive cost will be specified in the contract documents. Should the Contractor fail to complete the work within the time established in the bid, the Contractor will be assessed the established disincentive in addition to liquidated damages per Section 108.07 of the Standard Specifications.

On A + B projects and on A + C projects, the Contractor shall furnish a progress schedule promptly after the award of the contract, but no later than the pre-construction conference and be prepared to discuss both its proposed methodologies for fulfilling the scheduling requirements and its sequence of operations.

<u>Construction Progress Schedule.</u> A progress schedule, when required by the contract, is one of the keys to assessing contract time. It is important that the schedule be realistic and as accurate as possible and kept up-to-date. On working day projects, the Department will furnish the Contractor a progress schedule developed for the determination of contract time that may be used as the contract progress schedule, or the Contractor's own proposed progress schedule may be submitted for approval. If the Contractor elects to furnish a progress schedule for approval by the Engineer, it should be furnished promptly after award of the Contract. In the event the Contractor has not submitted an approvable progress schedule by the beginning of contract time, the progress schedule prepared by the Department shall be the acceptable progress schedule and used to assess contract time.

On completion date projects which include A + B projects and on A + C projects, the Contractor shall furnish a progress schedule and be prepared to discuss both its proposed methodologies for fulfilling the scheduling requirements and its sequence of operations.

The Engineer will review Contractor prepared progress schedules and approve schedules as they relate to compliance with the specifications and logic. The progress schedule must be approved by the Engineer prior to commencing work. The progress schedule shall be a computer-generated bar-chart type schedule meeting the below minimum requirements. These activities shall be significantly detailed enough to communicate the Contractor's understanding of the construction sequencing and phasing of the project.

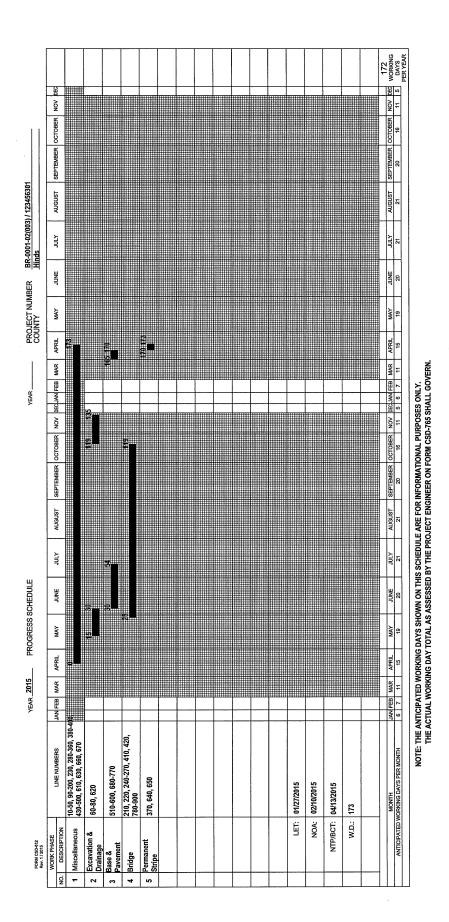
An approved progress schedule shall be in effect until the date on which a revised schedule is approved. The approved progress schedule will be the basis for contract time assessment.

When preparing the progress schedule, the Contractor shall include the following:

- A time scale to graphically show the completion of the work within the specified contract time.
- Define and relate activities to the contract pay items.
- All activities in the order the work is to be performed including submittals, submittal reviews, fabrication and delivery.
- All activities that are controlling factors in the completion of the work.
- The time needed to perform each activity and its relationship in time to other activities.

The progress schedule shall provide a bar for each major phase of construction such as, but not limited to, clearing and grubbing, grading, drainage structures, bridges, base, shoulders, paving, etc. with an estimated start working day and completion working day for each bar, all within the specified contract time.

The Contractor will be required to submit monthly progress schedule updates on all projects with a contract time duration of more than eight (8) months.


The Engineer may request the submittal of a revised progress schedule within 10 days of the occurrence of any of the following conditions. If the Contractor fails to submit the requested schedule, the Engineer may withhold the future monthly estimates or portions thereof.

- A major change in the work
- A time extension
- The progress schedule becomes unrealistic

The Engineer's approval of the aforementioned Progress Schedules does not waive any contract requirements.

When a Critical Path Method (CPM) schedule is required in the proposal, this schedule will be used in lieu of the bar graph progress schedule in evaluating work progress. In such case, the same time frame noted in this subsection for the original submittal along with the update requirements will apply.

The following is an example of a project Progress Schedule.

1.3.18 Percent of Elapsed Time

The Contractor's progress will be determined monthly at the time of each progress estimate and will be based on the percentage of money earned by the Contractor compared to the percentage of elapsed time. The percentage of money earned will be determined by comparing the total money earned to-date by the Contractor, minus any payment for advancement of materials, to the total dollar amount of the contract. The percentage of time elapsed on working day contracts will be determined by comparing the available working days assessed to-date on Form <u>CSD-765</u> to the total available productive days for the contract. The percentage of time elapsed on completion date contracts will be determined by comparing the expired Calendar Days to the total Calendar Days provided for in the contract. This information is calculated in SiteManager and shown on the front of the monthly estimate (Form CAD-001).

When the "percent complete" lags more than 20 percent behind the "percentage of elapsed time", the Project Engineer shall notify the Contractor and the Contractor shall have seven (7) calendar days to submit a written statement and revised progress schedule indicating any additional equipment, labor, materials, etc. to be assigned to the work to ensure completion within the specified contract time. The revised progress schedule will be reviewed per <u>1.3.17 Progress Schedule and Contract Time</u> of this Manual. When the "percent complete" lags more than 40 percent behind the "percentage of elapsed time", the contract may be terminated.

1.3.19 Final Report of Project Engineer - Form CSD-200

The recapitulation of final contract quantities shall be reported on Form CSD-200. This form is generated by SiteManager at the completion of the construction project. A quick reference guide is located on the <u>MDOT@Work</u> website. The report has been modeled so that final quantities may be listed in the order that the pay items appear on the estimate sheets (Form CAD-002).

On Form CSD-200 in SiteManager, an asterisk will appear with a pay item when the Final Quantity is 10% greater or less than the Original Amount or \$10,000 greater or less than the Original Amount. All items marked with an asterisk will require an explanation by the Project Engineer as to why the item overran or underran. The Project Engineer, or the Project Manager authorized by the Project Engineer, is to create a Semi-Final Quantity Adjustment (Change Order). In the Semi-Final Quantity Adjustment, the Project Engineer is required to give an explanation of all the Pay Items on Form CSD-200 that are marked with an asterisk. The Semi-Final Quantity Adjustment is to be approved by the Project Engineer. Once the Semi-Final Quantity Adjustment is approved, a new Form CSD-200 should be generated and submitted with other final data as directed in the previous paragraph.

If any changes are made to the quantities on Form CSD-200, it may be necessary to create another Semi-Final Quantity Adjustment.

Two copies of the report with other final data shall be submitted to Final Plans Section of Contract Administration Division.

Form CSD-200 has been custom-designed to meet the needs of the Department and simplify the preparation and submittal of final quantities. No unauthorized modifications or changes will be allowed to the program, data files or print files.

1.3.20 Fuel and Material Price Adjustment

Applicable contracts contain provisions pertaining to price adjustments for fuel and construction materials. Monthly Petroleum Products Base Prices can be viewed on the MDOT website at the address shown below:

http://sp.gomdot.com/Contract%20Administration/BidSystems/Pages/letting%20calendar.aspx

The contract base prices for fuels and materials will be entered into SiteManager prior to the first monthly estimate. Each month the current base prices are entered into SiteManager. When preparing the monthly estimate, the difference between the contract base price and the monthly base price for fuel and material is calculated and an applied to all items that have a fuel or material code listed in the contract. The specifications state that adjustments in the costs of asphalt cements used in asphalt mixtures will be based on the theoretical gallon per ton of the mixtures. For converting theoretical pounds of asphalt to gallons, a unit weight of 8.43 pounds per gallon is used. The fuel adjustment for structures is based on one thousand dollar (\$1,000.00) increments of completed work allowed.

Fuel and Material adjustments are completed within SiteManager each estimate period. The monthly adjustment is based on work actually performed during the estimate period or "Total Allowed to Date" minus "Previous Estimate." The total adjustment for the estimate period are shown as a lump sum adjustment on the estimate recap sheet (Form CAD-001).

When a project goes beyond the completion date and liquidated damages are assessed, the fuel and material price is not adjusted beyond the completion date. This requires a correction report to be entered into SiteManager.

Manual Correction for special circumstances are made on Forms <u>CSD-880</u> & <u>CSD-881</u> which included in the <u>Forms Section</u> of this Manual.

1.3.21 Final Adjustment for Fuel and Materials

Applicable contracts also provide provisions for a final price adjustment when there are differences between the final checked quantities and previously reported quantities of applicable items. Final fuel and material adjustments are calculated in SiteManager by Final Plan Section of Contract Administration Division after final quantities have been established. These adjustments will be shown on a report generated in SiteManager and on Form CAD-001.

1.3.22 Recording of Measurement of Materials in Hauling Vehicles

All construction items hauled to the project in tons, gallons, pounds, or cubic yards of material in loose vehicular measurement (LVM) are to be measured in accordance with the following, except quantities of materials such as seeds, vegetative materials for mulch, fertilizers, etc. which are to be recorded by other methods as indicated in this Manual for the particular item.

Haul Vehicles. All vehicles that are to haul material on a volume or weight basis are to be assigned a three-digit truck number. No number will be reassigned to another vehicle during the life of a project. Each time a new number is assigned to a vehicle, the vehicle must be re-measured or a new tare weight established and certified by the Project Engineer. After a number has been assigned to the vehicle, it will be placed on the vehicle in such a way as to be easily identified.

Volume Measurement. Where loose vehicle measurement (LVM) is used, the capacity will be computed to the nearest one-tenth cubic yard and paid to the whole cubic yard. Vehicle measurements are to be recorded on Form <u>CAD-230</u> – Truck Volume Calculations for LVM. This form will calculate the volume. Measurements greater than or equal to nine-tenths of a cubic yard will be rounded to the next highest number. Measurements less than nine-tenths of a cubic yard will not be rounded to the next highest number. Example: A vehicle measurement of 9.9 cubic yards will be classified as a 10-cubic yard vehicle. The Contractor may increase the capacity by body modifications or by the addition of sideboards to the vehicle prior to the assignment of the truck number. All vehicles shall be legibly numbered for identification.

The vehicles will be loaded and judged in accordance with Sections 106.09, 108.05, and 109.01 of the Standard Specifications. When material is placed on the project, the inspector must validate (sign) the load ticket. At that time the Inspector will ascertain that the truck is loaded sufficiently to meet the predetermined capacity. If for any reason the load is unsatisfactory, it is to be returned to the source or otherwise disposed of and not counted for payment. Rejection of the load shall be documented on the ticket.

For the purpose of determining the amount of material that has been placed in the natural boundaries of the contract, such as county lines and urban and municipal boundaries, the Project Engineer will document station numbers or any other acceptable system identification of sections as established on the contract estimate.

Weight Measurement. When recording weights, the Inspector will write the gross and tare weights in the designated positions on the haul ticket. When material is placed on the project, the inspector must validate (sign) the load ticket. Some projects may have materials that are to be measured by weight and an approved electronic weighing system is furnished and utilized by the Contractor. In this case, as the information is completed on a haul ticket, the Inspector may omit the gross and tare weights if the weighing system shows the correct net weight on a dial indicator and prints the correct net weight on a haul ticket. In such case, the Inspector will observe the net weight on the dial indicator and compare the observed weight with the weight printed by the electronic printer and continue such observations and comparisons until the Engineer is fully satisfied as to the accuracy of the system. During this phase and periodically thereafter, the Engineer should make observations of the actual scale gross and tare weights at the scales and compare the net weight thus obtained with weights read from the dial indicator and the ticket printouts.

In the event the observed net weight taken from the dial indicator or the scales differs from the net weight printed by the electronic printer by less than 10 pounds for weights under 2000 pounds or by less than 20 pounds for weights over 2,000 pounds, the net weight printed by the electronic printer is to be used as the net weight, and the cause for any variation should be established by the Contractor to the satisfaction of the Engineer.

In the event the variation is more than those indicated above, the Inspector is to write in actual scale gross and tare weights on the ticket and disregard the electronic system until fully corrected and synchronized with proper scale weights and certified for accuracy in accordance with Section 401 of the Standard Specifications.

Dry Weight Basis. When recording weight such as stabilizer aggregate to be measured for payment by the ton dry weight basis, the gross, tare and net weights are to be recorded on the ticket in pounds.

Percent moisture is to be recorded on the ticket at a location that is easily seen and to the nearest one (1) decimal place.

The moisture content of the first moisture sample is to be used on each ticket until the second moisture content is determined. The second moisture content is to be used until the third is obtained, etc. Several should be run as soon as practicable at the beginning of hauling or at a change of conditions. A log should be maintained in the Project files for each date and time of day a moisture determination is made.

The net weight is to be placed on the ticket in the space where net weight is usually indicated. The Contractor should be advised that the indicated net weight is net wet weight and that pay weights (dry weight basis) are to be computed using the moisture content recorded. The Project Engineer will compute the conversion to net dry weight. Refer to MT-7, Subsection 5.2 in Appendix B of the Materials Division Inspection, Testing, and Certification Manual for guidance on the calculation of net dry weight.

Conversion of the pounds net dry weight for subtotals and totals for monthly and final estimates will be made to the nearest one-hundredth (.01) of a ton.

<u>Conversion of Quantity.</u> When requested by the Contractor, material specified to be measured by the cubic yard or ton may be converted to the other measure as appropriate. Factors for this conversion will be determined by the District Materials Engineer and agreed to by the Contractor. The conversion of the materials along with the conversion factor will be incorporated into the contract by supplemental agreement. The supplemental agreement must be executed before such method of measurement is used.

Determination Of Quantity. Daily, the Project Engineer will enter the ticket numbers and quantities into SiteManager by project number, pay item, and section, if applicable. SiteManager will generate the haul ticket tabulations will be used for determination of quantities for payment to the Contractor. At the discretion of the Project Engineer, one copy of the tabulation may be furnished to the Contractor.

When the project is finalized, the Project Engineer will submit to the Final Plans Section in Contract Administration Division, the original of the SiteManager tabulation with any changes, additions, or deletions noted thereon, the quantity revised accordingly, and the original haul tickets. The Final Plans Engineer will review the tabulations, make spot checks, and verify final quantities.

The Final Plans Section of the Contract Administration Division may permit the use of other methods of recording when the quantity is not sufficient to justify the use of the imprinter MDOT haul tickets or when approved equipment supplied and in operation by the Contractor is adequate.

EXAMPLE:

- Project No.: STP-0059-03(023)/100556301
- Contractor: Sam Finley, Inc.
- County: Lauderdale
- Material: 907-304-B

Granular Material, Class 5, Group D

Lbs

0000011 TRUCK NUMBER	789	907-304-в	5	0028552 QUANTITY		
TRUCK NUMBER	STP-0059-03(023) / 1 SAM FINLEY INC LAUDERDALE COUN	CL 5 GPD		QUANTITY		
	PROJECT ID	PAY ITEM				
		052114	LBS. X	GROSS 76920		
		DATE	CU. YD	TARE 30420		
TEMP TIME		CHECKED BY POINT OF LO	DADING:			
°F	A.M. P.M.	John Doe				
TEMP TIME		RECEIVED BY POINT OF DE				
°F	А.М. 🗌 Р.М. 🗌	James Williams	ſ			
POINT OF DELIVERY STATION:		TO STATION:		MSTRE CONTENT 0.058 *		
REMARKS:				No. 333601		
Moisture obtained at 1:				140. 333001		
PROJECT ENGINEER'S ORIGINAL						

1.3.23 Salvaged Materials

The Mississippi Department of Transportation (MDOT) does not require a salvage credit on either State Funded projects or Federal Aid projects for any unused construction materials, salvaged highway appurtenances, or other equipment or material for which the useful life is greater than one year. Any salvaged material may be hauled by contract requirements up to 30 miles from the project or the distance to the Contractor's yard / stockpile, whichever is greater.

For Reclaimed Asphalt Pavement (RAP), MDOT can retain 50% of the RAP or 10,000 tons, whichever is less, on a given project. Also, the Contractor's portion of the milled material will be claimed first. This does not mean it is automatic that RAP is to be retained on each contract. It is to be based on need. The quantity of RAP, up to the maximums of 50% or 10,000 tons, whichever is less, will be determined on a project by project basis. The District will advise Construction Division of the quantity of RAP desired to be retained in the scope of work or the plans.

Any other materials to be salvaged (i.e. guard rail, guard rail posts, etc.) should also be included in the scope of work submitted to Construction Division or in the plans. These materials must meet the hauling requirement of up to 30 miles from the project or the distance to the Contractor's yard / stockpile, whichever is greater.

CHAPTER 2 - EARTHWORK AND ROADSIDE DEVELOPMENT

2.1 GENERAL

Contract documents will indicate if a project requires the Contractor to submit an Erosion Control Plan (ECP). Additional information can be found in Subsection 107.22 of the Standard Specifications. At the preconstruction conference or prior to starting any work on the project, the Contractor will submit to the Project Engineer for concurrence an ECP detailing a comprehensive erosion and siltation control plan. The ECP will utilize temporary measures and permanent erosion control features to provide acceptable controls during all stages of construction.

The ECP should be maintained on the project site at all times, updated as work progresses to show changes due to revisions in the sequences of construction operations, replacement of inadequate best management practices (BMP), and the maintenance of BMPs. Work should not be started until an ECP has been concurred with by the MDOT. The Engineer has the authority to suspend all work and/or withhold payments for failure of the Contractor to carry out provisions of Mississippi Department of Environmental Quality (MDEQ)'s Storm Water Construction General Permit, the ECP, updates to the ECP, and /or improper maintenance of the BMPs.

As a minimum, the plan should include the ECP sheets, or the plan profile sheets, showing the location of all temporary erosion control devices. Erosion control devices should be identified by exact type, temporary or permanent, configuration, and placement of each item to prevent erosion and siltation. A narrative of the Contractor's temporary erosion control plan should also be submitted. As a minimum, the narrative should include a detail of the Contractor's proposed sequence of operations including, but not limited to, clearing and grubbing, excavation, drainage, and structures. It should also include BMPs that will be used to prevent siltation and erosion from occurring during the Contractor's proposed sequence of operations.

The Contractor will designate a responsible person whose primary duty is to monitor and maintain the effectiveness of the erosion control plan, including NPDES permit requirements. A copy of the certification for the Contractor's Certified Erosion Control Person will be required.

The ECP should include a plan for the disposal of waste materials on the project right-of-way which should, as a minimum, address containment and disposal of materials resulting from the cleaning (washing out) of concrete trucks that are delivering concrete to the project site and containment and disposal of fuel / petroleum materials at staging areas on the project.

As soon as the ECP has been approved, a copy of the Storm Water Pollution Prevention Plan (SWPPP) (Narrative, ECP with updates) shall be available on the project at all times. The Contractor should provide a weatherproof enclosure, such as a mailbox, on the project at a readily accessible location to the Engineer or others who may want to review the ECP.

2.2 EARTHWORK

A. General. The items of work discussed in this subdivision include those construction operations necessary to complete the roadbed to subgrade. The subgrade is the top surface of the design soil and is the surface upon which the base will be constructed. In the case of a project involving stage construction, the subgrade may be the top surface required by the contract. Such items as clearing

and grubbing, removal of obstruction, excavation and embankment and the installation of minor drainage structures are usually considered in this category.

B. Structural Design of Highways. The construction of any highway consists of a number of correlated operations which must be integrated to produce a finished road. Each step has a definite effect on the quality of that road. In any type of construction, the preparation of the foundation is the first and one of the most important stages of the work. In the case of highways, grading and drainage make up the foundation and, irrespective of the care taken in succeeding phases of work, a durable highway cannot be attained if it has an unsatisfactory foundation or is inadequately drained.

The basic concept of structural design of a roadbed is the selection from preliminary tests of the most suitable available materials and placing them most advantageously. Their grouping in horizontal layers under the pavement is such that the most benefit will be derived from the inherent qualities of each material.

- C. Preliminary Checking of Plans and Outlining of Work. Prior to the start of work, the Project Engineer should go over the work indicated in the plans and note all conditions carefully as follows:
 - 1. Note topography, drainage, and the general characteristics of material to be handled.
 - 2. Check all rights-of-way. Note utility agreements and special agreements regarding right-ofway. Allow no encroachments on private property without permission. Allow no encroachments on public property. Discuss with adjacent property owners the exact location for ramps.
 - 3. Check all obstructions within the right-of-way which may interfere with construction. Make sure any obstructions are addressed in the contract documents and advise the Assistant District Engineer Construction if obstructions are not covered in the contract.
 - 4. Check all existing drainage and structures, and proposed new structure sites.
 - 5. Investigate completely and report to the Assistant District Engineer Construction any anticipated changes in plans which would require a change to the contract.
 - 6. Analyze the necessity for detours, signing, temporary structures or other means of traffic control during construction.
 - 7. Make a complete inventory of all existing traffic signs and other traffic service devices as required in the contract.
- D. Authority and Duties of Inspectors. Grading and drainage inspectors work under the supervision of the Project Engineer and are directly responsible to the Project Engineer in all matters pertaining to the work. To realize the importance of the Inspector's duties, the earthwork inspector needs only to recognize the fact that the greatest portion of road failures is due to deficiencies below subgrade elevation. Inspectors are authorized to inspect all work performed and materials furnished. Such inspection may extend to all or any part of the work. The inspector is not authorized to issue instructions contrary to the plans and specifications or to act as foreman for the Contractor. The inspector should notify the Project Engineer at once of any changes affecting the quality of work or disagreement with the Contractor.

Inspectors must familiarize themselves with the plans, specifications, special provisions, staking procedures, the soil profile, the cross sections, the balance points and the proposed drainage features.

When the inspector is furnished transportation for the purpose of maximum coverage of a construction project, it does not mean that the inspecting duties can be performed from a vehicle. Inspectors should park their transportation vehicles outside the limits of the roadway construction activities and be on the job site at all times.

A chief grading and drainage inspector's responsibilities are divided into the several classifications:

- 1. Counsel with supervisors and the Contractor's representatives regarding specific procedures to be followed in relation to the abatement or prevention of siltation and pollution. See that the Erosion Control Plan, which was approved by the Engineer, is carried out during the construction operations.
- 2. If required in the specifications, inspect the Contractor's equipment for compliance.
- 3. Inspect clearing and grubbing; excavation or roadway cuts and/or drainage operations; and the construction of embankments.
- 4. Perform the sampling and testing, or notify the person responsible for the sampling and testing as required.
- 5. Keep daily records of work in progress and make required reports, including a complete, factual, legible report on the Inspector's Daily Report.

Subordinate assignments of some phases of the grading work to other personnel may be necessary due to the scope of the Contractor's operations. Each assignment must be made to personnel thoroughly knowledgeable in the phase of work to be inspected, or at least capable of receiving, understanding and carrying out instructions. Frequent counsel between such personnel and immediate supervisors should be conducted so the Project Engineer is confident that the inspector's duties are being properly performed.

2.3 CLEARING AND GRUBBING

2.3.1 General

Clearing and Grubbing must be completed in advance of any grading operations and accomplished in accordance with the provisions and requirements of Section 201 of the Standard Specifications, unless otherwise indicated in the contract. Much of the success of the project depends upon the proper performance of the clearing and grubbing operation. The final appearance of the project and the stability of cleared surfaces can be affected by improper procedures.

Clearing and grubbing is accomplished under a lump sum bid basis or under an area bid basis, and occasionally, by special provision, on a selective cutting bid basis. When the work is performed on a lump sum or area basis, the boundaries of all areas in which the Contractor will be required to perform the work should be clearly marked. When the work is performed by selective cutting of single trees, each tree to be cut should be plainly marked.

The Project Engineer should thoroughly study the plans, special provisions, right of way agreements, erosion control plans and preliminary reports for any special details concerning the clearing and grubbing. These details may consist of existing facilities to be protected or removed, arrangements for the disposal of merchantable timber, disposal arrangements which have been made, blasting information, etc. The Inspector in charge of clearing and grubbing work must be thoroughly familiar with all requirements of the contract that relate to this phase of the work.

It should always be remembered that if the contract does not include a pay item for removal and disposal of obstructions and salvageable materials such removal of structure and obstructions and salvaging all designated materials automatically become a part of and is included in the price bid for Clearing and Grubbing.

If the project or any part of the project is within the boundaries of a National or State Forest or Park, representatives of those organizations should be contacted prior to actual start of clearing and grubbing operations, as regulation other than those set forth by the Department may apply to areas within their boundaries. The Engineer should encourage visits from those agencies when they have certain jurisdiction over clearing operations and should do everything possible to ensure that the Contractor complies with their regulations.

Prior to the start of the work, the Project Engineer, the Inspector and the Contractor's designated superintendent should field check the project together in order to be in agreement as to the stake out control, as to any applicable requirements of special provisions and right of way agreements, and, in the case of clearing and grubbing on an area basis, the actual pay limits determined by the Department's personnel. At this time, the Contractor's planned operations should be fully discussed with particular attention being given to all pertinent requirements of the contract.

2.3.2 Protection and Preservation of Property

It is the Contractor's responsibility to protect certain features of the project that are not to be removed. These may consist of existing highway improvements, utility facilities, adjacent buildings, fences, trees, and shrubbery. The Contractor also has the responsibility for preventing or minimizing siltation and pollution set out in the provisions and requirements of Subsections 106.02 and 107.12 of the Standard Specifications, and other provisions of the contract.

Private or public property adjacent to the right of way, and all improvements thereon, must be continually protected from damage by the Contractor's equipment and any construction operations that are under way. When and where such damage is done by the Contractor's equipment and operations, it shall be the Contractor's sole responsibility to rebuild, repair or make good such damage or injury at no additional cost to the State.

The Department attempts to have all utilities removed and/or relocated prior to issuing the NTP, however, there are occasions when utilities are to be removed and/or relocated after construction operations have started. These locations should be restricted from the Contractor's operations in the contract documents. The Contractor should be kept informed as to progress of any removal or relocation so that the Contractor's operations can properly coordinate with the activities of the utility company involved.

All trees, shrubs, survey or historical markers, objects of historical or archeological value that are to be preserved or remain in place must be clearly marked and the Contractor made aware of their location. Trees and shrubs outside the clear zone which will not interfere with the use of the highway and its drainage system may be selected to remain in place and undamaged for their scenic, historical or other value. Necessary measures must be taken during the clearing and grubbing phase of the work to provide the required protection for trees and shrubs. Any tree surgery performed shall be in accordance with the requirements of Subsection 201.03.1.2 of the Standard Specifications.

2.3.3 Extent of Clearing and Grubbing

Clearing and grubbing on a lump sum basis includes all clearing and grubbing required between the right of way lines from the beginning to the end of the project, except sections which are specifically omitted on the plans or by special provisions, such as bridge sites covered by separate contract. Also included is the removal of all obstructions, structures, etc., which are not listed in the proposal by special pay items under "Removal of Obstructions" or similar items. When not otherwise specified, the area within the slope limits of cuts, fill ditches, right of way ditches and embankments and an additional 10 feet on each side shall be cleared of all trees (unless marked to remain), stumps, brush, including roots and other objectionable material, structures and obstructions. However, intermediate (approximate) construction limits of slope stake lines shown on the plans in no way limits the provisions of Section 201 of the Standard Specifications which provides that this work shall consist of clearing, grubbing, removing and disposing of all things within the limits of the right of way and easement areas acquired by the State for the construction of the project, except for such things as are designated to remain or be removed in accordance with other provisions of the contract. The Contractor may be required to clear and grub any area outside intermediate limits or lines within the limits of the right of way and all underbrush, stumps, obnoxious trees, plants, refuse and other undesirable matter within the right of way and adjoining construction easements. Material within areas designated for removal shall be disposed of in accordance with the provisions of Section 201 of the Standard Specifications. Stockpiling of surplus or reclaimed materials which impair the safe flow of traffic or detract from the appearance of the right of way, will not be permitted, excepting only those items shown on the plans or which may have been specifically authorized before construction began.

2.3.4 Removing Miscellaneous Structures

Miscellaneous structures to be removed under the clearing and grubbing item should, when practicable be removed prior to grading operations; however, pavements, sidewalks and other similar items may often be removed more advantageously during excavation operations. Basements or cavities left by structure removal which require backfilling are to be backfilled and compacted in accordance with the provisions and requirements of Subsections 202.03 and 203.03 of the Standard Specifications.

2.3.5 Abandoning Wells

Wells within the right of way should be sealed. This sealing should be undertaken as an early operation to preclude the well becoming lost as other operations proceed. Methods for sealing wells under various circumstances will be set out on the plans or elsewhere in the contract.

2.3.6 Removing Signs and Other Traffic Control Devices

Where official traffic control signs or other devices are located within the construction limits and must be removed to clear construction, the removal will be covered under clearing and grubbing unless a specific pay item has been established for the removal of the signs or other traffic control devices.

2.3.7 Burning and Removal of Debris

The Contractor is to be advised that compliance with the State laws relative to the creation of fire hazards, setting fire to forest accidentally, or otherwise, is the Contractor's responsibility. The Contractor is to exercise care in burning brush, trees or stumps and debris. Such burning, if done, must not be at locations adjacent to trees and shrubs selected to remain, and must comply with established air pollution regulations. No burning will be allowed on Interstate right-of-way.

Materials and debris which cannot be burned are to be removed from the right of way and disposed of in accordance with requirements of the specifications. There is a general tendency on the part of some Contractors to attempt to dispose of such material on property abutting the right of way. This will not be permitted except under the restrictions imposed in Subsection 201.03.2 of the Standard Specifications.

All roots not removed from heavily timbered areas before the start of grading operations must be removed from lifts of embankment materials as they are placed.

2.3.8 Records and Reports

In the case of clearing and grubbing on a lump sum basis, the project field notes should indicate the distances right and left of center line and that stakes or other markings are placed to define the limits of clearing and grubbing. In the case of clearing and grubbing on an area basis, the field notes will accurately indicate all measurements and information required to accurately compute final pay quantities for such work. All pay quantities allowed on progress and final estimates are to be supported by recorded data. Any appreciable changes from estimated plan quantities are to be noted and properly covered by approved quantity adjustments or supplemental agreements.

A daily record of events related to clearing and grubbing operations is to be reported on the Inspector's Daily Report.

NOTE: During inspections of clearing and grubbing operations is an excellent time to make observations and a record by station numbers of areas which appear to be unusually soft or spongy, or to contain other evidence of unsatisfactory materials, seeps, springs or other conditions which may require correction under the provisions of Subsection 203.03.8.2 of the Standard Specifications, or other necessary procedures in the preparation for grading operations. Any such observations should be called to the particular attention of the Project Engineer.

2.4 EXCAVATION AND EMBANKMENT

2.4.1 General

The operations of excavating the roadway and borrow material, and the placing, compacting and finishing of the excavated material in the embankment or fills are among the most common operations in highway construction work. These operations are practically inseparable, since one operation is rarely carried on without the other; and inspecting and controlling them as a single grading operation is generally considered. The great bulk of the grade inspector's duties and responsibilities are the inspection and control of the excavation and embankment work of the grading operation.

The degree to which the Engineer or Inspector will be able to perform duties and meet responsibilities assigned in the supervision of excavation and embankment construction is dependent on the person's

knowledge of the character, dimensions and details of the work to be done, and on the person's knowledge of directions, provisions and requirements contained in the contract relative to excavation and embankment construction. Prior to initiating inspection duties, the Engineer or Inspector should have acquired a thorough understanding of the geometrics of the designed roadway section, the construction stakes defining and controlling the limits of the work, the disposition of work to be performed and construction methods to be employed, the provisions and requirements of the contract relative to the quality of work required, the records and tests required, and the method of reporting on the quality of the work. The Engineer or Inspector in charge of earthwork operations must review the soil profile and attain a thorough knowledge of the cross-sections, typical section, planned drainage facilities and materials sources. The Inspector should also have knowledge of the capabilities of various types of equipment used by the Contractor, the Contractor's plan of operations and the proposed method of proceeding with the work.

The Contractor's choice of equipment to perform earthwork operations depends on the nature of material being excavated, grade to be transversed, length of haul, working room, costs and availability of the equipment. The methods used in performing the construction and all equipment, tools and machinery used in executing the work is subject to the approval of the Engineer in accordance with the provisions of Subsection 108.05 of the Standard Specifications.

When specified in the contract, excavation and embankment construction is to conform to the applicable requirements of In-Grade Preparation as set out in Section 321 of the Standard Specifications.

2.4.2 Excavation Operations

Excavation will be classified as set out in Subsection 203 of the Standard Specifications. When sufficient clearing and grubbing has been done to efficiently start grading operations, inspections of the area should be made by the Engineer, or Inspector and if clearing and grubbing within the construction limits has been satisfactorily completed, and the prerequisite conditions of Subsection 203.03.1 of the Standard Specifications have been met, the Contractor should be given the authority to proceed with grading operations. Drainage conditions and requirements are to be carefully studied, slope stakes and other control layout stakes should be properly guarded and protected by the Contractor and the Contractor's equipment checked and approved. It is the intent of the specifications that all suitable material excavated in the grading of the given section of the roadway is to be used, to the extent required, in the construction of the embankments in that section. In order to utilize all desirable material in the construction of the embankments, all intersections, approaches and entrances should be graded at the time of excavating and grading the roadway. Frequent inspections will be necessary during the excavation operations to determine that the roadway, intersections, approaches, ditches and channels are excavated to the required grade, width and slopes. Cut ditches are to conform to the plan typical section and are to be finished to the full depth as specified. At the end of cuts, cut ditches should be turned away from embankments on contour lines. Drainage from cut ditches, or from any part of the roadway, should not be diverted onto property adjacent to the right of way except at natural drainage points, or until written agreement has been entered into with the owner of such adjacent property.

If channel changes are required on the project, the Project Engineer and Inspector should be thoroughly familiar with field conditions and plan requirements for such channel change construction. Proper disposition of channel excavation should be utilized in embankment construction where practicable, as provided in Subsection 203.01.5 of the Standard Specifications.

2.4.3 Unsuitable Materials

During the excavation operations, it is necessary at all times to observe the nature of the materials encountered. Undesirable soils, such as certain silts and clays which exhibit large changes in volume with varying water content, are usually unstable under varying moisture conditions, and should be used with discretion. It is essential that full consideration be given to making the best possible use of the soil material encountered in the excavation. However, the use of soils which may cause instability in the subgrade or embankment, or which may have some other detrimental effect, should be avoided where possible, unless adequately treated to make them satisfactory. Soils which are unsuitable in the upper portions of the subgrade may often be used in the bottom or center of the embankment where their detrimental effects will be minimized.

There will be soils encountered that are unstable in their natural state because of excessive moisture content. Many of these soils will respond to drainage improvements and mechanical manipulation to reduce the moisture content to render them suitable for use. Some soils, however, are unsuitable because of their natural composition and can cause instability in embankments or have some other detrimental effect. The Engineer or Inspector should not be hesitant about ordering the removal and disposal of material determined to be unsuitable. This is provided for in Subsections 203.03 and 321.03.3 of the Standard Specifications. The depth or removal will be that determined by the Engineer to be necessary. However, before a determination is made to waste sizable quantities of questionable soils, a thorough study should be made with District and Construction Division personnel to determine the feasibility of action.

2.4.4 Surplus Material

As soon as possible, the Engineer should reconcile preliminary quantity calculations and shrinkage factors with actual quantities and factors. Deviations may require wasting, adjustment in haul, grade, or typical section; e.g. flattening fill slopes. When there is no provision in the contract for disposal of surplus material, the Engineer should select disposal areas within the right of way if possible, which will not interfere with drainage, will improve the stability or appearance of the facility or would benefit future improvements. Unless otherwise indicated in the contract, surplus material so used should be compacted as for any other embankment material.

2.4.5 Embankment Construction

The specifications include general requirements with respect to preparation of all areas on which embankments are to be constructed. These requirements include satisfactory use or other disposal of unsuitable materials, preparation of area on which grasses or other vegetation exist, benching existing side hill slopes or embankment slopes which are to be widened, etc. The grading inspector should be thoroughly familiar with Subsection 203.03 of the Standard Specifications and any related special provisions of the contract.

The grading inspector will inspect the Contractor's operations and procedures, as necessary, to obtain stability and the density specified. The inspection and control necessary will vary considerably depending on the requirements specified, the type of soil and ease of compaction, the moisture control necessary, weather conditions, the skill of the Contractor's forces, numbers and types of equipment and other factors. Density tests are an aid to, and a verification of, the proper compaction of the finished embankment. All density measurements are to be recorded on Form TMD-522.

Experience shows that despite the good grading operations and proper compactive effort in the construction of embankments, there are a number of items which, if not carefully observed and specifically inspected, may result in settlement. These special attention areas are listed as follows:

- 1. Settlement or side slip may result on existing fill slopes or side hills if not properly benched. Careful inspection should be given to the matter of benching side hill slopes and existing embankment slopes to be widened, as indicated in the specifications.
- 2. Settlement may result at grade points if not undercut, backfilled, and compacted in accordance with Subsection 203.03.8.2 of the Standard Specifications.
- 3. Settlement in areas adjacent to, or over structures frequently occurs. Probably the most important inspection feature in this connection is the proper placement and compaction of material in the areas inaccessible to rollers and the compactive effort of the earth moving equipment. In most cases, this can be eliminated by close inspection of compaction by small mechanical tampers.
- 4. Compaction of backfills at bridge abutments, wings and retaining walls must be carefully performed. The slope of the existing ground should be stepped to prevent wedging action against the wall. Use material which will compact readily, if available. Silt or clay should not be used if sandy soils are available. During backfill operations, possible displacement of wing or abutment walls should be checked as the backfill progresses.
- 5. The grading inspector should be alert to possible damage to any drainage structure which the Contractor's heavy equipment may cross or work over, and particularly to possible damage to pipe culverts with minimum fill heights over the structure. Check for displacement of alignment.

The grading inspector must insist on the construction of slopes conforming to typical cross section. The grading inspector should encourage the Contractor to maintain adequate roadway crown during construction to facilitate proper drainage.

On some projects, major shortages or overages may be encountered in the quantity of excavated material with respect to the requirements for construction of the embankments. This should be detected at the earliest possible time and a solution reached to correct the situation. One of the best ways to detect a shortage or overage in excavation is to note the amount of excavation hauled and length of haul as the work progresses with respect to the information indicated on the plan sheets. Appreciable variations in plan sheets are an indication of trouble of some nature. The proper solution of such problems will vary, depending on the cause. It may be determined that the plan quantities are in error, that the shrinkage factor is varying appreciably from that indicated on the plans, the Contractor is not constructing the work to the required typical section, or other similar causes. If indications are that a shortage or overage is of an appreciable quantity, the Project Engineer, Assistant District Engineer - Construction and Construction Division personnel should seek the proper solution. Minor shortage or overages may be corrected on the project by minor grade changes or minor adjustments of the typical sections to bring the earthwork in balance. Any significant changes in the plans to correct the shortage or excess will require an approved Quantity Adjustment (Form <u>CSD-081</u>).

The specifications provide that material for roadway embankment shall be placed in horizontal layers not to exceed eight (8) inches uncompacted. However, the Contractor may be permitted to back dump an initial lift of only a sufficient depth to support hauling equipment when embankments are to be constructed over low swampy ground and provided the top of such "bridging" is three (3) feet or more below subgrade.

Supporting power of soils is directly affected by compaction. The lower the compaction the lower the supporting power at any given moisture content. Improperly compacted embankments will consolidate non-uniformly under traffic resulting in an uneven road surface. Soils vary widely in the amount of compactive effort necessary to reach a common degree of compaction. Care must be taken to see that uniform density is obtained throughout each fill rather than to have some areas compacted in excess of the density requirements while others are below requirements. Full width embankment construction is required by the specifications. This will assure more uniform density throughout the fill including the outer edges of the embankments. In order to achieve uniform density, it is essential that the moisture content be uniform. In most cases, the required density can be obtained with the least effort if the moisture content is close to the optimum obtained by the standard moisture-density test.

Soil as taken from cuts or borrow pits is usually too wet or too dry for compaction to maximum density. Therefore, the first operation is the preparation of the soil by adjusting the moisture content. Excess moisture can only be removed by evaporation. This can be speeded up by placing the soil on the fill in thin lifts and stirring occasionally with a blade or by making a few trips over the soil with a sheepfoot roller.

If the excavated soil is too dry or becomes too dry before the required density is obtained, the Contractor must be required to add moisture. This can be accomplished by sprinkling with proper and adequate water equipment and mixing on the grade with blades, disk-harrows or other equipment. In some cases, it may be advantageous to the Contractor and may provide a more uniform moisture content by applying water to the area to be excavated immediately prior to or at the time the material is being excavated.

2.4.6 Uniformity in Embankment Formation

The importance of uniformity in embankment construction cannot be over emphasized. Construction methods which ensure, to the extent economically feasible, uniformity of material, layer thickness, moisture content and compactive effort are vital in the accomplishment of embankment construction.

The proper breakdown of clods and bleeding of material is very essential in obtaining proper embankment consolidation. The use of disk plows, blade graders or similar equipment ordinarily will accomplish the desired results in most soils. Particular reference is made to the requirements for disk-harrowing and heavy blading of basement soils having variable characteristics and of design soils in the formation of embankments as set out in Subsection 203.03.8 of the Standard Specifications. When it is necessary to place unlike materials in the same embankment layer, care should be taken to use procedures and methods which will provide a satisfactory blend of these materials.

Proper routing of the Contractor's hauling equipment over the fill area is another essential operation in obtaining uniformity in the compacted area. Over compaction by continuous application of heavy loads in streaks or lanes is especially detrimental in some soils, particularly expansive clays, in that after the fill is constructed and upon moisture change, uneven pressures will develop and produce distortions. These may occur too late for correction and may even occur after the subsequent pavement is in place. Hauling with heavily loaded equipment should always be disbursed approximately uniformly over the entire roadway.

One of the main difficulties an inspector will encounter in the construction of embankments will be the tendency of most Contractors to haul material to the embankment sites at a rate greater than the processing equipment on the embankment can properly disburse, blend and uniformly compact the material.

The Inspector should carefully watch for such situations, and if necessary, the Project Engineer should not hesitate to require that either the rate of hauling be decreased or the amount of processing and compaction equipment be increased as necessary to result in each layer being properly processed and compacted before any material for the succeeding layer is placed.

2.4.7 Drainage

Water, either directly or as contributory factor, is often the cause of highway failures. It is therefore, essential that all work involving drainage is carried out carefully and accurately and in such a way that the design features are not impaired in construction, yet the flow lines and other features satisfactorily fit field conditions.

In cut sections or shallow fill sections, ditches are to be constructed to such grade that there will be no impounding of water with normal maintenance. This may require ditch grades which are independent of the roadway grade, or a special ditch. All of this should be anticipated before slope stakes are set. It may be necessary to gradually increase the slope stake constant in the direction of flow for cut sections in order that the foreslope of the cut may be extended downward to provide an increased gradient in the cut ditch. This is highly important in cuts having profile grades of less than about one percent (1%). This, of course, should be considered in the field review and design phase and is usually more economical than constructing paved inverts to increase the velocity sufficient to prevent siltation; however, these things are frequently overlooked in design and should be considered in the field prior to construction. Failure to do so almost always results in a poorer quality of highway, and a constant maintenance cost throughout the road life.

2.4.8 Finish Grading

It is considered good construction practice that the finish grading, in which the subgrade is shaped and trimmed to required lines and grade and the slope of cuts, fills, ditches and channels are trimmed and dressed to a neat and finished appearance, follow as closely as practicable with the rough grading. When in-grade preparation is specified in the contract, it is mandatory that finish grading be performed in accordance with the requirements of Section 321 of the Standard Specifications.

The finished graded section is to conform within the tolerances specified in the specifications. Particular attention is required to providing proper drainage to the rounding of slopes, to conformance to plan typical sections, to compacting and shaping of slopes and top six (6) inches of design soil, and to the neatness and completeness of the graded section. Where topsoiling is required, either in cut or fill sections, appropriate adjustment is to be made in the graded section such that the finished section after topsoiling will conform to the typical sections shown on the plans, within the tolerances specified.

A freshly graded and neatly dressed section of road is a beautiful thing, and if structurally sound should be a credit to the Inspector, and to the Contractor.

2.4.9 Documentation

In determining pay quantities for the Contractor's progress estimates, it is necessary that uniform and verifiable procedures be followed in estimating and documenting excavation quantities measured on an FM or FME basis.

A recommended method is for the Project Engineer on the estimate cut-off date to show on a set of plans, in the case of (FM), the cubic yards removed to date from each cut and, in the case of (FME), the cubic yards placed to date in each embankment. The totals of the yardages allowed for each cut or for each fill would be the total quantity allowed on the estimate. At the end of the next estimate period, a line can be drawn through the previous quantities and new quantities written in for the new estimate.

There are other acceptable methods for documenting these particular quantities but in all cases computations should be based upon plan quantities, or corrected plan quantities, and not upon conversion of LVM from load counts through the use of the eighty (80) percent conversion factor set out in Subsection 109.01 of the Standard Specifications which is intended for small quantities.

Whatever method of computation and documentation is used, the provisions of Chapter 9 apply and the following sentence is quoted for emphasis.

"However, regardless of whether the quantities are approximate or reasonably accurate, a documented record must be placed in the project files, and subject to review, of the method, procedure, and basis for determining any quantity which is allowed on partial estimates. The files should include documentation that clearly shows how quantities were measured and calculated".

2.5 STRUCTURE EXCAVATION

It is essential that the foundation under a structure provide support as firm and as nearly uniform as possible under the entire bearing surface. Inspectors should ascertain to the best of their knowledge and ability that the foundation material will support the structure to be placed upon it without appreciable settlement. If the foundation material is spongy or pumping and cannot be stabilized by draining and drying, the Inspector should not hesitate to instruct the Contractor to remove the unsatisfactory material and backfill with satisfactory material.

The completed foundation area is to be finished to the correct line, grade, and width. This may be checked by batterboards and stringline, stringlining off forms that have been set to correct line and grade, or by any other method determined by the Inspector to insure that the foundation has been properly finished.

Measurement for structure excavation is to be as set out in Subsection 206.04 of the Standard Specifications and documentation and computation should be as set out in Chapter 9 of the Manual.

2.6 ROADSIDE DEVELOPMENT

Roadside is the establishment of vegetation to provide erosion control upon the completion of excavation and embankment construction. Where the term "plant establishment" is used, it shall be understood to mean the work and time necessary to provide fully established, healthy vegetation.

Planting and establishment of vegetation shall be performed at the earliest practicable time consistent with other operations to provide that the maximum permanent or temporary vegetation is established as quickly as possible. The Contractor shall schedule work so finishing of all areas requiring vegetation can begin as soon as practicable. Finishing of such areas and the planting shall progress at the same rate as the work. The Contractor shall perform plant establishment throughout the life of the contract. The Contractor, upon written notification by the Engineer of noncompliance, will have 48 hours, excluding Sunday, to correct the situation and comply with the specifications.

Upon failure of the Contractor to comply with the written notification, the Engineer will suspend any or all operations in progress as deemed necessary to ensure compliance and may deduct from all subsequent estimates an amount equal to 30 percent of the value of all erosion control items completed between the suspension date and subsequent date of compliance. By execution of the contract, the Contractor agrees that such deduction will not be made as a penalty but as agreed reduction in pay for deficient performance by having failed to provide the Department with the maximum possible ground cover as intended under the contract.

2.6.1 Fertilization

It is essential that all sketches, measurements, and calculated areas along with type and rate of application of fertilizing items ordered be recorded and dated as a source document during application and be verified by the MDOT employee (inspector). Such recordings and verifications are to be made by area, as the work progresses at rates of application shown on the vegetation schedule in the plans or in the contract documents.

To implement the recording of all essential field information, the Engineer should prepare, ahead of actual work, sketches, dimensions, calculated areas, etc., in order that all pertinent data may be properly recorded during application.

Form <u>CSD-203</u> should provide an up-to-date total of the quantities of each fertilizing item satisfactorily placed. Form <u>CSD-203</u> is shown in the <u>Forms Sections</u> of this Manual. Fertilizer transferred from other projects should be noted in the remarks section of Form <u>CSD-203</u>.

Each line of Form <u>CSD-203</u> should represent an area of the roadside calculated in acres for the proper control of the application of fertilizing items. These calculated areas should not exceed approximately three (3) acres in size as required by Subsection 213.03 of the Standard Specifications. This will provide for the initially calculated areas to be used for the measurement and control of the application of all roadside development items, unless job conditions dictate otherwise. Any additional application of fertilizing items ordered and applied on previously vegetated areas shall be recorded in the same manner as for the initial application, with the words "Additional Application" indicated in the remarks column.

All fertilizing items ordered and applied for which a separate Pay Item is not included in the contract are to be recorded under the super-phosphate provisions with the type and rate indicated under 4(a.) or (b.) and the quantity included under the superphosphate column of Form <u>CSD-203</u>.

Fertilizing items are to be certified by the Project Engineer and submitted with the final plans after completion of the work.

Fertilizing may also be accomplished by hydraulically applying the fertilizer with the seed, tackifier, and mulch in accordance with Section 227 of the Standard Specifications.

2.6.2 Seeding

It is essential that all sketches, measurements, and calculated areas along with type and rate of application of seeds ordered be recorded and dated as a source document during application and be verified by the signature of the MDOT employee (inspector). Such recordings and verifications are to

be made by area as the work progresses at rates of application shown on the vegetation schedule in the plans or in the contract documents.

To implement the recording of all essential field information, the Engineer should prepare, ahead of actual work, sketches, dimensions, calculated areas, etc., in order that all pertinent data may be properly recorded during application.

Form <u>CSD-723</u> should provide an up-to-date total of the quantities of each type of seed satisfactorily placed. Form <u>CSD-723</u> is shown in the <u>Forms Sections</u> of this Manual.

Seeds transferred from other projects should be noted in the remarks section of the report as meeting the requirements of the contract.

For those pre-tested seed failing to fall within the allowed tolerance for germination, the Contractor may elect to increase the rate of seeding to obtain the minimum specified germination. The calculated rate of the seed to provide the minimum germination percent is to be used to determine the ordered amount for each section (area). For each section, such ordered amount is to be entered in the ORDER column of Form <u>CSD-723</u> for the type(s) of seeds planted. The calculated equivalent amount of seed meeting germination tolerance, required and placed on each section, is to be entered in the PAY column for the type(s) seeds being placed. The lot number for the seed(s) should be recorded in the LOT NO. column of the appropriate section. The percent germination of deficient seed (s) should be entered in the REMARKS column for each section.

Should the Contractor elect to plant post-tested seed(s), the amount of each type ordered and planted for a given section should be entered in the ORDER column of Form <u>CSD-723</u>, which amount should equal the amount calculated for the area if the seed met the requirements for germination. The PAY column should indicate the calculated amount for seed meeting the requirements for germination. Should the results of post-tested seed not be within the minus 5% tolerance, any additional seed ordered will be shown for the same area in the ORDER column on another line (or sheet) of Form <u>CSD-723</u>. The PAY column for this entry should be zero (0).

Form <u>CSD-723</u> is to be certified by the Project Engineer and submitted with the final plans after completion of the work.

Seeding may also be accomplished by hydraulically applying the seed with the fertilizers, tackifier, and mulch in accordance with Section 227 of the Standard Specifications.

2.6.3 Mulching

It is essential that the necessary field data, measurements, and materials ordered by the Engineer be recorded and dated as a source document during application and be verified by the signature of the MDOT employee (inspector). Such recordings and verification are to be made by the area as the work progresses, at the rates specified in the vegetation schedule in the plans or in the contract documents.

To implement the recording of all essential field information, the Engineer should prepare, ahead of actual work, sketches, dimensions, calculated areas, etc., in order that all penitent data may be properly recorded during application.

Form <u>CSD-481</u> should provide an up-to-date total of the quantities of each mulching item satisfactorily placed. Form <u>CSD-481</u> is shown in the <u>Forms Sections</u> of this Manual.

Measurement for the weight of vegetative materials is to be made in accordance with the provisions of Subsection 215.04 of the Standard Specifications. The recorded field data should include the individual weights used to determine the average weight per bale for each delivery to the site and, for each area, a tally of the number of bales used from each delivery for which an average weight per bale has been determined.

Material transferred from other projects should be explained in the remarks section of the report form.

All field data should be recorded as the work progresses so the Project Office records will provide an up-to-date and accurate tabulation of the quantities satisfactorily placed to date. Each such entry on Form <u>CSD-481</u> is to be initialed by the person making the entry. Mulching quantities shown are to be certified by the Project Engineer and submitted with the final plans after completion of the work.

Additional instructions for filling out Form <u>CSD-481</u> are on the last page of the form.

Mulching may also be accomplished by hydraulically applying the mulch in accordance with Section 215 of the Standard Specifications.

2.6.4 Grassing

Grassing as a per acre item consists of furnishing, transporting, placing, plant establishment, and all work, including ground preparation, fertilizing, seeding, and mulching, necessary to produce a satisfactory and acceptable growth of grass.

Standard ground preparation consists of plowing or disk-harrowing and thoroughly pulverizing the areas to a depth of 4" immediately before the application of erosion control items. Fertilizing consists of furnishing, transporting, spreading, and incorporating fertilizers of the type and rate shown on the vegetation schedule. Incorporation of fertilizer and ground preparation may be performed simultaneously.

Seeding should be done immediately after completion of standard ground preparation and incorporation of fertilizer. The required type of seeds, minimum rates of application, and planting dates of seeds are shown in the vegetation schedule in the plans. It is the Contractor's responsibility to apply an ample amount of each type of seed to produce a satisfactory growth of grass and of the seed type required.

If conventional application of seeds is used all seeds should be covered lightly with soil by raking, rolling, or other approved methods, and the area compacted with a cultipacker. Seeds may be applied using the hydroseeding method except during the months of June, July, August, and September. During these months, the seeding shall be incorporated in accordance with the above Conventional Application method.

Mulching should be performed as soon as practicable after seeding, and can be performed simultaneously when hydroseeding.

When contracts provide for grassing to be paid by the acre, the standard ground preparation, fertilizer and seed are not measured for separate pay. The Agricultural Limestone and Mulch are still measured as individual pay items.

2.6.5 Temporary Grassing

This work consists of furnishing, transporting, placing, plant establishment and all work necessary to produce rapid-growing grasses, grains or legumes to provide an initial, temporary cover of grass. This work includes ground preparation, fertilizing, seeding and mulching necessary to establish a satisfactory growth of temporary grass.

When contracts provide for temporary grassing, the standard ground preparation, fertilizer, seeding and mulch are included in the item.

2.6.6 Hydroseeding

Hydroseeding, complete and accepted, will be measured by the acre. No separate payment will be made for ground preparation, seeds, fertilizers, or mulch. Acceptance will be based on a satisfactory growth and coverage of seeds planted.

Agricultural limestone shall be measured and paid for under Section 225 of the Standard Specifications.

CHAPTER 3 - BASES

3.1 GENERAL

The base course is the part of the roadway structure or cross-section which provides uniform and substantial support for the paved surface. This course transfers the traffic load from the pavement to the underlying subgrade without overtaxing the bearing capacity of the subgrade. It is essential, because of this important function, that the base course be constructed to provide strength and durability.

In order that the base course conform to the required grade, section, density and stability, it is essential that the prepared subgrade conform to the required grade, section, density and stability. High and low areas in the foundation will affect the thickness of the base. If soft, unstable or spongy areas are observed in the subgrade or the base course, they are to be examined, the cause determined and proper correction made before proceeding with the overlying course. If not corrected, these deficiencies are likely to be reflected in the next superimposed course(s). Correction of weak areas that are due to unsuitable material will require its removal and replacement with suitable material. Soft, spongy areas resulting from excess absorption of surface water may be corrected by aerating and recompacting.

To assure density and stability, samples are taken and tests run during production of the base course. Refer to the MDOT Inspector's Handbook for the correct sampling frequencies and methods for sampling and testing aggregates.

The base will usually be chemically treated. The specific type(s) will be designated on the typical section and are to be constructed in accordance with the appropriate specifications.

3.2 GRANULAR MATERIAL COURSES AND CRUSHED STONE BASE COURSES

Granular and crushed stone base courses are used to provide a working platform for the pavement structure and can be shaped and compacted to a true plane. Section 321 of the Standard Specifications requires that the foundation be brought to the required grade and cross section. Since the crushed stone base course provides a channel to remove water, it is imperative that the impermeable foundation be true to grade and free from ruts or other irregularities which may trap water.

To facilitate and ensure uniform density throughout the course, the aggregates are placed and compacted in layers. If the required compacted depth of the base course exceeds eight inches (8"), the course shall be compacted in two or more layers of approximate equal thickness. Each layer shall be satisfactorily compacted before placing the next layer.

The course derives its load bearing and load distributing properties through the interlocking of the aggregate particles. The density of the course is directly related to the interlocking of aggregate particles. Construction operations will require handling and placing the aggregates in a manner to minimize segregation and manipulation.

Hauling operations over a previously placed layer must be done so that no contamination or intermixing of subgrade materials or rutting of the subgrade occurs at the edge of the previously placed layer.

Mixing and shaping operations cannot be neglected. If it is considered necessary to blend aggregates

on the grade, sufficient shaping, mixing and compaction equipment must be on the job. If sufficient equipment is not on the job to properly mix and layout of the course, placing operations must be suspended or curtailed until the mixing and shaping operations are being satisfactorily performed. Excessive manipulation which could cause segregation should be avoided.

To ensure the constructed course will conform to the required thickness, the inspector should maintain an accurate check on the quantity of aggregates as placed. Methods of checking the placing of required quantities of aggregates may include: Deposit of each load within the measured distance computed for the spread of the load, load count of quantity required per station, or other method which will assure an even distribution of the required quantity. A tally of the quantity of placed aggregate should be kept by the inspector.

During compaction operations it should be determined by inspection that the moisture content is satisfactory, the necessary blading is performed to uniformly distribute and mix the material and remove depressions and other irregularities, the required density is obtained and the finished course conforms to the required grade, line, cross section and smoothness. Field desnity measurements should be documented on Form TMD-524.

The course must be uniformly laid out and compacted from shoulder to shoulder. A water truck, specialized compaction unit and motor grader operated as a team by competent personnel are essential to a well mixed, thoroughly compacted, true and uniform base course.

Maintenance of previously-placed base cannot be neglected, and should take priority over placement of additional sections of the course. The Contractor is responsible for maintenance until the next course is placed.

3.3 LIME TREATED COURSES.

<u>3.3.1 General</u>

The treated subgrade (design soil) is not considered in most instances to be a portion of the pavement structure and does not permit a reduction in the thickness of superimposed courses.

3.3.2 Types of Lime for Soil Stabilization

The lime used in soil stabilization is either quicklime or hydrated lime. These types are usually referred to as high calcium or high magnesium (dolomitic) limes. This chemical lime is not to be confused with agricultural limestone or pulverized limestone used to sweeten, neutralize or reduce the acidity of the soil.

3.3.3 Chemical Effects of Lime on Clay Soils

There are several chemical reactions that take place simultaneously when lime is added to a clay soil but are difficult to separate and analyze due to lack of factual data. However, it has been generally accepted that three definite reactions take place and are understood to some degree. These chemical reactions fall into three categories which are base-exchange, cementation and carbonation.

3.3.4 Physical Effects of Lime on Clay Soils

As a result of the chemical reactions, certain physical properties of a soil containing clay are altered. Even though some disagreement exists due to lack of factual data or desirable criteria for comparison, it is generally agreed that lime influences the plasticity, volume change, grain size, strength and durability of a soil.

1. Plasticity - One of the most advantageous uses of lime is its ability to reduce the plasticity index of clay soils. This phenomenon is more commonly referred to than other changes in the physical properties of soil by lime treatment. The change in plasticity by the addition of lime is affected by changes in the plastic limit and liquid limits of a soil. The plastic limit of a soil is increase when additional amounts of lime are added to the soil.

Generally, but not always, the liquid limit of soil decreases with increased quantities of lime. The liquid limit is generally decreased in the more plastic soils and increased in the less plastic soils. The increase in plastic limit, however, is usually sufficient to reduce the plasticity index regardless of whether the liquid limit increases or decreases.

- 2. Volume Change Lime treatment of clay soils tends to reduce and minimize volume change that usually takes place in an untreated clay soil. As the lime content is increased, the plasticity is reduced, the shrinkage limit increases and the shrinkage ratio decreases. At the lime content where there is little change in plasticity index, there is little change in the shrinkage limit. The increased shrinkage limit results in less volume change of the soil when there is a gain or loss of moisture.
- 3. Grain Size Clay particles tend to agglomerate or gather together when lime is added. The degree of agglomeration is affected mostly by the type of soil and lime content. The heavy plastic soils tend to agglomerate more than sandy or silty soils.

The fine grain clay particles aggregate with the lime into larger particles and this improvement is reflected by a change in the soil classification.

4. Strength and Durability - There are many inter-related factors that influence the strength and durability of soil-lime mixtures. Some of the factors that affect the strength and durability of soil-lime mixture are the types of lime content, type of soil, compaction, density, temperature and curing.

3.3.5 Classes of Treatment

MDOT uses three classes of lime treatment stabilization: Class A, Class B, and Class C.

1. <u>Class A</u>. This treatment is specified for heavy clay soils and requires a double application of lime. It consists of spreading and incorporating the predetermined percentage of lime in two increments in the following sequence: spreading the predetermined percentage of lime, initially mixing with liberal amounts of water, sealing, mellowing from five to twenty days; & spreading the second increment of lime, final mixing, compacting, finishing sealing, and maintaining until covered by a subsequent course. The next subsequent course shall not be placed on the sealed course for at least seven (7) calendar days.

The first application of lime preconditions the soil by reducing the plasticity index to a limit where pulverization will not be difficult when the second application is needed. The second application of lime increases the strength of the soil-lime mixture materially by cementation of the remaining unagglomerated clay particles.

- 2. <u>Class B</u>. This treatment is specified for heavy clays and consists of spreading and incorporating the predetermined percentage of lime, initially mixing with liberal amounts of water, sealing and mellowing for five to twenty days; final mixing, compacting, finishing, sealing and maintaining until covered by a subsequent course, as described above under Class A.
- 3. <u>Class C</u>. This treatment is specified for plastic soils, AASHTO A-4 soils with a high group index and AASHTO A-6 soils with a low group index, and consists of spreading and incorporating the predetermined percentage of lime, mixing, compacting, finishing, sealing, and maintaining until covered by a subsequent course, as described above under Class A.

Laboratory tests indicate that soils of this type achieve a much higher strength if compacted immediately after moist mixing.

3.3.6 Construction Methods

- 1. <u>Preparation of the Soil</u>. All deleterious substances such as roots, stumps, grass turf and other vegetative material and aggregates larger than those that will not pass a 3-inch sieve, should be removed from the soil. Any soil considered to be unsuitable for stabilizing should be removed and replaced with suitable soil prior to treating.
- 2. <u>Preparation of Roadbed</u>. The roadbed is bladed and shaped to the required lines, grade and cross section within the permissible surface tolerances and compacted to the required density and stability prior to the application of lime. The roadbed should be firm and capable of supporting without displacement, the construction and compaction equipment. Unstable soil should be corrected prior to spreading lime.

Soil-lime mixtures compacted at the same compactive effort as that of a raw soil, tend to resist compaction and will result in a lower dry unit weight. This phenomenon results in a "bulking" of the mixture above the grade at which the untreated soil was prepared. The raw soil on the roadbed should be prepared to or below theoretical grade to compensate for this differential in grade after final mixing and compaction, especially where a subsequent course is to be a cement treated course. The approximate anticipated "bulk" may be determined by a comparison of the dry unit weight of the untreated and treated soils. The condition is not prevalent or critical in plastic AASHTO A-4 soils with a high group index or plastic AASHTO A-6 soils with a low group index.

Prior to treatment, the grade of the roadbed should be checked from grade stakes to insure proper grade control of the lime treated course.

3. <u>Determining Rate of Spread</u>. The amount of lime to be applied is furnished by Central Laboratory from the soil samples submitted and is expressed in pounds per inch per square yard, based on the actual dry unit weight of the soil to be treated.

The original samples submitted to the Central Laboratory for test and design should represent soils of generally like characteristics. If soils are encountered on the project differing materially from those represented by samples, additional samples should be submitted to the Central Laboratory for determination if a different rate of application should be made.

The rate of application shall be computed by multiplying the number of pounds per inch of depth per square yard as specified in the Central Laboratory's Lime Design by specified depth to be treated.

Lime may be spread by dry application or slurry application. Dry lime should not be spread during windy conditions.

The application by both slurry and dry methods should be closely controlled by frequent checks. Lime in excess of the point of fixation should be avoided due to increase cost and the possible reduction in strength. The point of fixation is that point at which there is not further improvement in the soil, as determined by laboratory tests. Laboratory tests have indicated that quantities of lime above the point of fixation had an adverse effect on the strength of some soils.

4. <u>Dry Application</u>. The dry application is accomplished by the use of a mechanical spreader or by bag distribution. Careful control should be exercised in the application of the lime as the predetermined percentage of lime is determined or specified, based on obtaining a minimum CBR value. Many failures result from improper distribution of lime, particularly along the edges of treated courses. Distribution along the edges can be controlled either by "tight" blading the roadbed and constructing a small windrow of material along the edge or constructing a small furrow and windrow with the "heel" of a motor grader blade. In both cases, particularly the latter, the raw material should be bladed well over into the section being processed prior to completion of processing to prevent the incorporation of untreated material when final mixed.

Lime should be incorporated as soon as possible and no later than six hours to reduce the possibility of carbonation. Hydrated lime, calcium oxide (CaO) or calcium oxide and magnesium oxide (CaO+MgO) are manufactured by heating calcium carbonate (CaCO₃) or calcium carbonate and magnesium carbonate (CaCO₃+MgCO₃) and is a reversible equation. Hydrated lime (Ca(OH)₂) exposed to the elements of the air prior to mixing and compacting should be avoided as the calcium oxide (CaO) will combine with the carbon dioxide (CO₂) from the air and result in a weaker material; it also deters the cementing action.

5. <u>Slurry Application</u>. Slurry is prepared at approved locations away from commercial and industrial sites to prevent damage to such areas. The lime is proportioned with water by means of an agitator, blender or compressed air at a rate of no less than 30% dry solids by weight. Blending of the lime and water may be accomplished during or prior to loading into distributing truck tanks, but it is necessary to determine the amount of dry lime in each distributing truck tank to insure proper distribution. Distributing truck tanks should be equipped with circulating devices, mechanical agitators, pumps or compressed air to prevent an accumulation of lime sedimentation.

The prepared roadbed is scarified or partially pulverized by means of a rotary mixer or other approved equipment prior to distributing the lime slurry. The lime slurry is distributed on the prepared roadbed at the predetermined rate by successive passes over a measured area until the specified percentage of lime is obtained. After each successive pass of the distributing equipment, the slurry solution is incorporated into the soil by the use of a rotary mixer, disk or other approved equipment. Each lime slurry application should be incorporated immediately to prevent flow from the area on which originally deposited, thereby resulting in a non-uniformity of lime distribution. 6. <u>Initial Mixing</u>. The lime and soil is scarified by the use of a motor patrol grader and mixed with a disk, rotary mixer or other approved equipment with liberal amounts of water for a soil requiring a mellowing period, Class A and Class B treatment. Scarifying the soil prior to the application of lime by the dry method is permissible and may be advantageous during periods of unpredictable winds. During such periods, excessive dusting may be reduced by watering immediately after spreading and prior to scarifying. Excessive dusting should be carefully controlled at this stage to prevent loss of lime in solution along the edges and prevent the concentration of lime on grades and slopes.

Scarifying and mixing should be controlled to provide a uniform depth with the crown of the undisturbed foundation course, and to conform as nearly as practicable to the finished course. The initial mixing should be for the required depth and width of the course to prevent the incorporation of treated material in the mixture at the time of final mixing. Mixing depth should be checked frequently from grade stakes by means of a stringlining to insure proper control of the mixing depth.

Water should be applied uniformly on the entire area being processed. The mixing and water application should continue until a homogeneous mixture of soil, lime and water is obtained. Mixing the water into the soil should immediately follow each application of water to receive the maximum benefit on the area placed and prevent non-uniformity of lime and moisture content.

Heavy clays receiving Class A and Class B treatment should be mixed at a moisture content of 15 or 20 percentage points above optimum moisture of the raw soil for maximum breakdown of clays under ideal temperature conditions.

Liberal amounts of water are not difficult to incorporate by means of a disk harrow, or a disk harrow following a rotary mixer, if each application of water is incorporated immediately. The immediate incorporation of water should be controlled to prevent concentration of lime and the infiltration of water into the untreated expansive material when disk harrows are used.

Application and incorporation of water in the above prescribed manner will produce a more uniform and homogeneous mixture, thereby resulting in a maximum reaction of lime on the clay particles and facilitate early final mixing and produce increased strength. At the completion of the initial mixing, the degree of breakdown or loaminess of soil can be detected by examination under the "hand method" prior to sealing for mellowing.

The soil-lime mixture should be sealed with a light pneumatic roller or other approved equipment upon completion of the initial mixing to prevent the loss of moisture and carbonation of the lime. Lime has a very high affinity for water and enough moisture must be retained in the mixture to further the reaction and receive a maximum plasticity and volume change reduction. Soil-lime mixtures mixed with liberal amounts of water may be difficult to seal immediately upon completion of the initial mixing. In such cases, the mixture may be conditioned for sealing by back-dragging with a dozer, motor patrol grader or other suitable drag type equipment.

Clay soils require a mellowing period of five to twenty days, but generally, depending on the temperature and the degree of mixing and water application, the very expansive clays should mellow approximately 10 days prior to being remixed. A tendency to apply less water and to

mellow for a minimum period in the late fall and early spring should be avoided due to the lack of desirable temperature conditions.

The proper amount of water on the initial mixing and proper mellowing period under proper temperature conditions are especially important to gain the design strength where the treated design soil is to become a part of the pavement structure. The pavement structure will be undersigned unless the treated course is processed under favorable conditions to obtain the strength upon which the design was predicated.

7. <u>Final Mixing</u>. After the soil-lime mixture has mellowed, the roadbed is bladed and reshaped to the required lines, grade, and cross section and remixed with a rotary mixer. Reshaping the initially mixed material to the required lines, grade, and cross section prior to remixing will produce a more uniform thickness and prevent the course from having variable thickness after shaping, compacting and finishing.

It may be advantageous to reshape the soil-lime mixture to the approximate lines, grade, and cross section as soon as possible after the initial mixing, as some mixtures become difficult to reshape after the mellowing period.

The final mixing depth should be controlled by checking with a stringline placed normal to centerline from grade stakes at 50-foot intervals.

The mixing is to be continued until the mixture will meet the sieve tests as specified in the contract. During this final mixing, the moisture content should be checked frequently and water added and incorporated as necessary. Moisture content of optimum, or slightly above, will benefit the strength of the course by reacting with any available free lime to provide additional cementation of the soil particles.

8. <u>Compaction</u>. Compaction should begin immediately after the final mixing for Class A and Class B treatment and after the first mixing for Class C treatment. Uniform and continuous compaction should begin at the bottom and continue until the entire depth of the mixture is compacted to the required density.

Sheepsfoot type rollers are primarily used during the initial compaction. Moisture, as required, should be added during the compaction to retain the mixture at the desired moisture content. Frequent checks on moisture content and the degree of compaction should be made to insure proper control.

Compaction of soil-lime mixtures, as with the stabilization of any soil, is a very influential factor and is of paramount importance. The strength and durability of soil-lime mixtures greatly depends on the degree of densification. The maximum strength of a clay soil-lime mixture does not always occur at the point of maximum density. For practical field construction procedures, however, the optimum moisture content for maximum density at identical compactive efforts will produce the maximum strength. Generally, clay soil-lime mixtures should be compacted on the wet side of optimum moisture.

Lime treated courses failing to meet the density requirements should be reworked and recompacted immediately at the proper moisture content. Delayed subsequent compaction or delayed reworking of soil-lime mixtures will result in a breakdown of the cementing bond and

should not be permitted unless available lime is present or additional lime is incorporated. At the stage of final compaction, a considerable quantity of the available lime has been consumed by chemical reactions and the strength of a soil-lime mixture will be adversely affected by delayed recompaction or reworking.

Compaction under ideal temperature conditions and proper moisture content will materially affect the ultimate strength and durability of a soil-lime mixture.

9. <u>Finishing and Curing</u>. The initially compacted mixture and any remaining mulch are bladed and shaped to the required lines, grade and cross section and compacted with pneumatic tire roller. The finished course should contain a uniform mixture of lime with a smooth, closely knit surface free from cracks, loose or segregated areas, and constructed by proper depth, width and surface requirements. Final compaction at the proper moisture content is of the utmost importance as lime mixtures are cemented together after the final compaction and not during the mellowing period or initial compaction.

Curing is best accomplished during seasons of warm temperature and by prevention of moisture evaporation from within the compacted mixture. The evaporation of moisture can be prevented by applying water to the completed section; this is most essential for development of the maximum intended strength.

Cracking and fluffing of lime treated courses are objectionable features of lime stabilization and can be detrimental. Cracking may result from the high volume change of the untreated underlying course, loss of moisture, internal shrinkage of the soil-lime mixture or heavy loads during the curing period. Small shrinkage cracks may be kneaded together by light applications of water and rolling with a light pneumatic roller during the curing period, and should be corrected before covering with a subsequent course.

Fluffing is generally the result of soil-lime mixtures being cured without proper application of moisture during hot weather. The loose material resulting from improper segmentation of the entire course can be detrimental to the strength of the pavement structure.

To minimize the most harmful effects of cracking and fluffing, each complete course shall be covered with a bituminous curing seal as soon as possible but no later than 24 hours after completion. The surface shall be sealed with one of the specified bituminous materials applied by a pressure distributor at the rate of 0.10 to 0.25 gallon per square yard or as directed by the Engineer. The bituminous material shall be heated or otherwise prepared to insure uniform distribution. Should the Contractor fail to seal the lime-fly ash course within the time specified, the Engineer will suspend all other work and withhold payment of the current estimate(s) until all damages resulting there from is corrected and the treated course is sealed.

A subsequent course shall not be placed on the sealed course for at least seven (7) calendar days. During this 7-day period, the treated course shall not be subjected to any type of traffic and equipment.

The Contractor shall maintain the treated course and the curing seal in a satisfactory condition until covered by a subsequent course. Protection shall include immediate repairs of any surface irregularities or other defects that may occur or develop. It shall be the Contractor's responsibility to control traffic and equipment loads to avoid damage and to guard against freezing of the treated material.

Soil-lime stabilization is severely restricted by climatic conditions and construction should be performed only in seasons of warm weather. The seasonal limits of lime treatment are set out in Specifications.

Durability of soil-lime mixtures are also affected by the length of time cured under ideal temperature prior to detrimental weathering. It is possible that a soil-lime mixture completed late in the season could develop satisfactory strength in a short period of time before cold weather, but could fail during the first winter. Soil-lime mixtures completed late in the construction season should be adequately protected from freezing by a surfacing course or a course of granular material of sufficient thickness with sufficient fines to prevent the infiltration of water which increases the possibility of freezing. When the mixture is subjected to freezing, the bonds between soil-lime particles are broken and result in a permanent loss of strength. To receive the maximum benefit of soil-lime stabilization, early or middle season construction is necessary. Late season construction is not desirable, simply because the maximum value may not be received for the dollar paid.

10. <u>Safety Precautions</u>. Special precautions must be taken for the protection to the eyes and bodies of workers handling lime. Hydrated lime is relatively safe but may cause irritation to sensitive skin. Quicklime is highly caustic and is very dangerous in the presence of moisture. Even a small amount of perspiration on the skin will cause severe burns and is especially dangerous to the eyes. Workers should be properly instructed in first aid for treating injuries resulting from handling lime. Severe burns should immediately receive professional medical attention.

Personnel handling lime should wear long sleeve shirts, safety glasses, respirators, close-fitting clothes and bathe as soon as practical after exposure.

3.3.7 Records and Reports

In addition to the required records of material tests and certifications, density and moisture records, the following records and reports are to be provided:

- 1. Keep pre-spread surface tolerance checks in bound notebook.
- 2. Complete Form <u>TMD-125</u> for each section.
- 3. The Department's prescribed delivery tickets are to be used for lime quantities.
- 4. Keep mixing depth checks in bound notebook and on Form <u>TMD-125</u>.
- 5. Keep tolerance checks of finished surface in bound notebook.
- 6. The inspector is to date and initial each sheet in bound notebooks on which recordings are made.

3.4 CEMENT TREATED COURSES.

3.4.1 General

Cement treatment may be specified for materials already in place or for newly processed materials. Processing already in place material normally involves road-mixing with either the multiple pass or single pass mixers. For processing new materials, mixing may be accomplished on the road using either the multiple pass or single pass mixers or a traveling plant, or at a central plant. The type of mixer used is usually optional with the Contractor. However, a specific type of mixer may be required as indicated in the contract by an application pay item designation.

Section 308 of the Standard Specifications describe the construction methods in detail. Attention is directed to certain operations which should be emphasized and to inspection procedures which are not normally included in the Standard Specifications.

Cement treated materials can be constructed properly only if the equipment and methods used in the work provide for the following:

- 1. Completion of the cement treatment for the section being processed within specified time limitations.
- 2. Uniform distribution of cement throughout the material being mixed.
- 3. Good pulverization and moisture control.
- 4. Proper compaction.
- 5. Adequate curing

The inspectors assigned to this type of construction should devote their efforts mainly to the accomplishment of these objectives.

3.4.2 Road-Mix

When the road mix method is used, it is important that the material-in-place under previous contract, or new materials, be properly prepared prior to spreading cement. This is important in order to make possible the proper proportions of cement, granular materials, and water, and in order to make it practicable to obtain the specified final cross section, grade, and desired thickness. Therefore, the requirements of the Standard Specifications should be thoroughly understood and closely followed in order to accomplish the desired results.

The work involved in treating granular material with cement should be started by laying out sections sufficiently short to leave no doubt that the work can be properly completed during the time available. As the work progresses, the length of section can be adjusted to fit the maximum capabilities of the equipment and personnel, and the available supply of materials.

The Standard Specifications contemplate that the Contractor will apply cement to the neat area to be treated as indicated in the contract, and will furnish and use mixing equipment such that the mixing operation will be performed to the neat lines indicated, within the tolerances allowed. To mix to a width greater or less is not to be allowed except as follows:

The Engineer may permit the Contractor to mix to a width greater than that specified, including tolerances, only with the provision that the Contractor furnishes and applies, at no additional cost to the State, the additional cement necessary to provide the same application rate on the additional mixed width as required on the design width. It is the responsibility of the Project Engineer to insure that the Contractor follows these procedures and that an understanding, evidenced in writing by the Contractor, has been reached and recorded in the Project Files. In such case the computations for pay quantities of cement is to be made on a proportional basis that is the amount of cement of which payment is made is to be computed as follows:

Soil-Cement-Water mixing for which payment is made is to be computed on the basis of design width.

At the discretion of the District or the Construction Division, the Project Engineer may be required to furnish additional copies of such basis for equipment approval.

The moisture content of the soil to be treated should be as nearly uniform as possible and should have a tendency to be on the dry side of optimum but should not be sufficiently dry to cause the washing of cement through the dry material into the subgrade upon application of the mixing water. During the mixing process, water added to reach the optimum moisture content should be applied, as required, through the mixer when using single-pass mixers, and in the necessary number of small increments, using pressurized equipment as specified, when using multiple-pass mixers. It may be desirable or even necessary to make intermediate moisture checks after dry mixing or partial mixing in order to know the amount of water that needs to be added to reach the optimum moisture content. It should be emphasized that <u>uniform</u> moisture content at the end of moist mixing is highly important, and every effort should be made to prevent moisture content in excess of optimum. Experience and research has shown that shrinkage cracking can be reduced by holding the moisture content to about 2% below optimum. For some soils, there is a tendency on the part of some Contractors to apply generous amounts of water to the mixture in order to facilitate compaction. This practice should not be permitted because of the resulting excess shrinkage cracking, and the probability of reduced strength of the treated course.

Bulk cement spreaders, which are used in the work, should be tested closely for their ability and proper setting to result in a uniform spread of the cement for the entire section being spread and, also, for uniformity of spread within the section. The Contractor should be required to make any initial adjustments and follow-up adjustments of the spreader as are necessary to achieve a uniform spread of the cement. Spread checks generally are made in two ways:

- 1. By making a square yard spot check. A three-foot square piece of canvas cloth is placed in the path of the spreader. After the spreader passes over the cloth, the cloth is carefully picked up such that the cement within the area of the cloth is collected and weighed. Better accuracy can be obtained using larger canvas cloth or special collecting frames.
- 2. For each linear distance of spread, a comparison is to be made between the actual weight of cement spread with the weight of cement which should have been spread at the specified cement content.

It is particularly difficult to add additional cement to a section on which insufficient cement has been placed. In order to achieve a uniform re-application over the entire area, critical equipment adjustments must be made, or other costly procedures followed. In no case should a second application of cement

be attempted, except by the uniform application of an amount equivalent to the maximum deficiency at any one location applied over the entire area for which the deficient spread was made.

In the case a section is laid out for known amount of cement to be applied from a truck through the spreader and such known amount of cement fails to cover the entire area, additional cement is to be used to complete the spread at the required application and appropriate deductions made for the excess cement used, if applicable, above the allowable tolerance.

As indicated in the list of records to be kept as outlined herein below, a detailed record of the method of obtaining the correction of a deficient spread is to be made immediately after such correction. It should be pointed out that excess cement, including that applied to correct a minus deficiency, exceeding the five (5) percent allowable plus tolerance is to be deducted from measured quantities, and no payment made therefore.

For the reasons stated above, it is extremely important that the Contractor provide, adjust and regulate equipment such that the proper amounts of cement are applied upon initial application.

3.4.3 Central-Mix

On some projects, central plant mixers will be required. The Central Mixing Plant may be either the batch mixer or continuous mixer type, meeting the requirements of Subsection 308.03.2 of the Standard Specifications. Prior to beginning delivery of plant mixed materials to the road, plant facilities should be carefully checked to insure satisfactory proportioning and mixing is accomplished. Scales and meters for batch type plants should be tested for accuracy. For continuous flow-type plants, careful calibration should be made of all feeding and metering devices in order that all materials will be proportioned accurately. The mixer should be checked to determine that it is in good condition and will mix the materials satisfactorily. Water measuring devices should be checked for accuracy. Cement storage facilities for all materials should be adequate to insure sufficient available materials for continuous production adequate to accomplish placement within the specified time limitations.

In proportioning the ingredients for the mixture in a central plant, the amounts of water and cement for the completed mixture are generally the same as for the completed road-mix. The amount of water to be added is that necessary for hydration of the cement and subsequent compaction, which, in general, is close to the optimum moisture content for compaction, but should never exceed the allowable tolerance above optimum moisture. The desirable time for addition of water in the Central Plant can be determined by observations and performance for the specific project, but practice indicates that there is some advantage in delaying the addition of water a couple of seconds to get the benefit from a limited amount of dry mixing of the cement and aggregates.

The addition of cement into the mixture in a uniform manner and in the desired amounts is always a cause for concern, since it has such an important bearing on the finished product and the cost thereof. Proportioning cement by weight in batch mixers is generally the most successful method of assuring that the required amounts are processed. The feeding of cement into continuous type mixers is generally performed with continuous flight augers or vane feeders. Due to the physical characteristics of cement relative to occupying varying volumes under different pressure conditions, it is difficult to be assured of an accurate delivery of the desired percentage. The more successful cement feeders now attempt to deliver cement from a constant head receiver in which the cement is agitated or other means to keep it in a uniform condition for delivery to the mixture. Calculations for proportioning of the

ingredients should be similar to those used in design proportioning as set forth in Method of Test MT-9 (TMD-11-09-00-000), 5. (c).

Theoretically, cement is proportioned into the mixture by volume. Actually, control of the proportioning at the plant must be made considering weights of the ingredients converted to volume percentages required. Depending on the type of plant, procedures must be devised for determining the satisfactory rate or proportioning. In the case of batch plant, this is no problem. In the case of a continuous plant, a satisfactory method involves the intercepting of material for a known time increment from various feeders and determining the dry weights for each aggregate and then applying the calculations as indicated above.

In case of difficulty or question as to the actual proportions of the soil or soil-aggregate and cement in the mixture, a cement titration is available, which may be performed in a reasonable time to check the performance of mixing operation. This test can be performed in the Central Laboratory in accordance with AASHTO Designation: T 144 and provisions could be made for the performance of this test in other Department Laboratories.

It should be remembered that it is the obligation of the Contractor to provide equipment and to control the delivery of all ingredients to the mixer within the specified tolerances and the Engineer is not to take or inherit these responsibilities, but rather is to assist the Contractor in the calibration of the various feeders of the plant and make such checks as are necessary to insure uniform operation and control of the mixture.

The Standard Specifications require the trucks used for hauling cement treated mixture to the road be equipped with protective coverings to minimize the loss of moisture. Truck bodies and protective covers should be inspected for conformance with requirements before hauling is begun and periodically thereafter. The specifications require that Central Plant mixed cement treated material be placed by approved mechanical spreader(s) and the spreaders, rollers and all of the road equipment should be carefully inspected prior to approval for commencing the work.

3.4.4 Spreading, Compacting and Finishing

The Standard Specifications cover the details of these operations. Due to the effects of partial hydration of the cement during mixing and placing operations, the Specifications generally require that the Specified Density be something less than the Specified Density for similar untreated material.

The Specified Density stated in the Specifications is a percentage of the Standard Density of samples taken after completion of the mixing, molded and tested as provided in Method of Test MT-9 as outlined in Appendix B of the Materials Division Inspection, Testing, and Certification Manual.

Molding of the test specimens should be correlated as nearly as possible with the road operations in order that the elapsed time between sampling and completion of the molding will correspond to the elapsed time between sampling and completion of the compaction on the road.

When placing fresh cement treated material against the vertical face of previously placed material as provided in the specifications, special care should be taken to secure good compaction next to the previously finished portion. Usually, it is better to finish the fresh mixture at the joint slightly higher and trim it to grade during the "tight-blading" finishing operations. Joints finished low usually cannot be satisfactorily corrected.

Most of the cement treated courses in the past and some still are shaped and finished by blading with a motor grader. Probably due to the time limitations and the nature of the work, smooth riding surfaces built to line, grade, and section are difficult to obtain. If a treated course is not properly constructed from the start, it is next to impossible to correct the errors or faults without tearing everything out and starting over.

Too much emphasis cannot be placed on checking the grade and section at and between the bluetops as treated course is being finished. This is a responsibility of the Contractor and must be verified by the Department's personnel by appropriate recorded measurements.

Fortunately, on projects where electronically controlled fine grading equipment is used, the problems of finishing the section are diminished; however, attention is invited to the fact that cutting and filling with any type of machine in final surface finishing does not give desirable results because a thin layer of filled material usually cannot be satisfactorily bonded to the underlying material. It is desirable that the course be so constructed that the "tight-blading" should be clipping the surface of the course at all points. It is the Contractor's responsibility to prepare the compacted surface of the course prior to "tight-blading" in such a manner that satisfactory final clipping can be performed without wasting more than the very minimum amount of treated material.

3.4.5 Curing

It is very important that the newly constructed cement treated course be kept moist for the specified curing period. The curing seal is to be placed as soon as deemed practicable after final surface finishing and, until the curing seal is applied, the surface of the treated course must not be allowed to dry out. The curing seal, after application, shall be maintained and protected by the Contractor as required in the Specifications.

3.4.6 Records and Reports

In addition to the required records of material tests and certifications for the component materials in the cement treated course, the following construction records and reports are to be provided:

GENERAL

- 1. Complete Form <u>TMD-125</u> for each section.
- 2. If initial cement spread is deficient by more than the tolerance allowed, indicate on Form <u>TMD-125</u>, in detail, the procedure used to bring the spread within tolerance.
- 3. The Department's prescribed delivery tickets are to be used for cement quantity.
- 4. The inspector is to initial and date each sheet on which recordings are made in bound notebooks on a daily basis.
- 5. Recordings of calculations for tests made are to be preserved for future reference.
- 6. For records only, reports or bound notebook records are to be kept for curing agent.
- 7. Records or Deviation from Specified Values to be maintained currently.
- 8. Originals or copies of all records are to be maintained on the project site or in the project files at all times.

9. Record any unusual incident which might be a key to an abnormal condition or possible future behavior of the finished work.

BEFORE SPREADING CEMENT

- 1. Keep density record Form TMD-524.
- 2. Keep surface tolerance checks in bound notebook.
- 3. Keep longitudinal surface tolerance checks, if required, in bound notebook.
- 4. Keep results of moisture checks in bound notebook.

AT THE COMPLETION OF MIXING

- 1. Keep moisture checks as indicated above.
- 2. Keep results of pulverization tests in bound notebook and Form <u>TMD-125</u>. Also keep computations for tests as indicated above for moisture check.

AT THE COMPLETION COMPACTION AND FINISHING

- 1. Keep record of density Form <u>TMD-524</u>.
- 2. Keep surface tolerance checks in bond notebook.
- 3. Keep longitudinal surface tolerance checks, if required, in bound notebook.
- 4. Keep width tolerance record on Form TMD-524.
- 5. Keep thickness tolerance checks in bound notebook and Form <u>TMD-125</u>.

3.5 LIME-FLY ASH TREATED COURSES.

<u>3.5.1 General</u>

This type construction consists of treating a course with fly ash and lime, all in accordance with the requirements of the Specifications.

3.5.2 Construction Requirements

The first phase of this work is to mix the soil and fly ash by spreading fly ash over a scarified area of soil or soil-aggregate, followed by lightly disking or mixing the materials prior to spreading the lime. Fly ash is to be applied as set out in Subsection 311.03.4.1 of the Standard Specifications. Lime is then incorporated into the soil/fly ash course with sufficient water to allow the mixture to be uniformly mixed and immediately compacted to required density. No mellowing period is required or allowed with lime-fly ash courses. The course is to be shaped, compacted and finished in accordance with the provisions and requirements of Subsection 311.03.7 of the Standard Specifications. The finished course shall be cured and maintained in accordance with the requirements on Subsection 311.03.8 of the Standard Specifications.

3.5.3 Records and Reports

All checks, records, and reports are to be as set out in this Manual and reported on Form <u>TMD-125</u>. A copy of this form is in the <u>Forms Section</u> in the back of this Manual.

3.6 SHOULDERS

Shoulders are defined as that portion of the roadway adjoining the traveled way that is constructed for emergency use, for the accommodation for parked vehicles, and for lateral support of the base and pavement courses. For a graphic delineation of the limits of shoulders, vertically and horizontally, see Figure 1 at the end of Section 101 of the Standard Specifications.

One of the most important functions of the wide shoulders being constructed on today's modern highways is their contribution to the safety of the traveling public.

Materials for shoulder construction will, in most instances, be determined by availability and the class of highway under construction. Shoulders are usually constructed of compacted granular materials, mechanically stabilized, or cement stabilized granular materials. On heavily traveled high type roads, the surface of the shoulder may be paved with a surface treatment or hot mix asphalt.

The design of the shoulder will be shown on the plans and is to be finished to the widths and slopes shown on the typical section(s) and the applicable Super Elevation Standard Drawing. Setting shoulder blue tops will help insure that the shoulders are finished to the correct slope(s) and width(s).

To provide the maximum degree of safety on projects where traffic is being maintained and to obtain a properly constructed shoulder, the provisions of Subsection 320.03, Construction Details, of the Standard Specifications and/or any applicable Special Provisions should be followed closely.

3.7 IN-GRADE PREPARATION

In order that the contract requirements pertaining to In-Grade Preparation be properly carried out, it is essential that the Engineer and inspector(s) carefully read and understand the referenced sections of the Standard Specifications, and all applicable Notices to Bidders and Special Provisions.

Particular attention should be paid to the Subsections of the Standard Specifications pertaining to tolerances for the various courses in order that adequate checks may be made and documented before permitting the Contractor to proceed with subsequent courses or phases of work. For example, all finishing of the subgrade must be completed and checked before proceeding to the sub-base course.

In-grade preparation is defined as the work required to prepare (blade, shape, scarify, disk, mix, compact) the existing material to specification requirements prior to placement of the subsequent layer. In-grade preparation, whether or not measured for separate payment, will be required whenever a subsequent course is placed on design soil. Separate measurement and payment will be made only on full depth paving projects where the grading has been completed on a separate project, and measurement will be made only for the lane(s) which was graded on the earlier contract.

CHAPTER 4 - BITUMINOUS PAVEMENTS

4.1 GENERAL

Bituminous pavements comprise a large percentage of our State's Highway System. They provide a cost effective and easily maintainable flexible pavement. Several different types of asphalt pavements are used on today's highways. The most common is Hot Mix Asphalt (HMA) or Warm Mix Asphalt (WMA), but other types such as Stone Matrix Asphalt (SMA), Open Graded Friction Course (OGFC), and Ultra-Thin Asphalt Pavement (UTAP) are also used.

Vigilant inspection is required by the Contractor, the inspectors and laboratory personnel throughout each phase of its production, placement, and compaction.

Through the use of a Quality Management Program, the Contractor has full responsibility for quality management and maintaining a quality control system that will furnish reasonable assurance that the mixtures and all component materials incorporated in the work conform to contract requirements. The Contractor has the responsibility for the initial determination and all subsequent adjustments in proportioning materials used to produce the specified mixture, as approved by MDOT. Adjustments to plant operation and spreading and compaction procedures shall be made immediately when results indicate that they are necessary. The Contractor has to provide certified asphalt technicians to perform all necessary tests, data analysis, correction, etc. to assure that the Department is getting an acceptable product. The Contractor will also provide Weighmaster scale certification to insure accurate quantity measurements of the product.

The MDOT paving inspector is to receive, record and/or sign the individual truck tickets which show the weights and mix temperature. The MDOT paving inspector's duties include checking layout ahead of paving, checking equipment for compliance with specifications and checking each detail of receiving, dumping, spreading, compacting and finishing, as required in the specifications. Particular attention should be directed to the mix because many deficiencies in the quality of mix can be detected before the mixture is actually placed. The construction of joints and appearance of the mat require continuous observation by the inspector.

Surface smoothness and good riding qualities of a pavement can be attained only by hard work and strict attention to small details on the part of the project personnel. They should continually study the conditions peculiar to the job and strive to obtain the smoothest surface possible.

A smooth riding pavement costs no more than an unsightly poor surface, but it does require constant, careful inspection of all details of construction to obtain the desired results.

Persons involved with any phase of bituminous pavement construction should familiarize themselves of the contents of the latest version of the MDOT Hot Mix Asphalt Field Manual and the U. S. Corps of Engineers Hot-Mix Asphalt Paving Handbook.

4.2 ASPHALT PAVEMENTS

Basic requirements for different types of asphalt pavements are generally the same. Specifics are addressed in the contract documents and highlighted in sections below.

HMA or WMA mixtures are dense graded mixtures and are the most commonly used mixtures when paving Mississippi highways.

SMA mixtures provide a deformation resistant, durable surfacing material, suitable for heavily trafficked roads. SMA has a high coarse aggregate content that interlocks to form a stone skeleton that resists permanent deformation. The deformation resistant capacity of SMA stems from a coarse stone skeleton providing more stone-on-stone contact than with conventional dense graded asphalt mixes. Additionally, a small quantity of mineral fiber is used in the mix to help prevent drainage of bitumen during transport and placement.

OGFC mixtures provide a higher degree of friction as well as permeability to the surface of the pavement. This permeability further improves frictional behavior during wet weather while reducing the dangers of splash, spray, and hydroplaning due to increased drainage from the pavement surface. In addition, open graded friction courses are generally quieter than typical pavements.

UTAP mixtures are a popular approach to pavement preservation because of their ability to provide improved ride quality, reduce pavement distresses, maintain surface geometrics, reduce noise levels, reduce life-cycle costs, and provide long-lasting service. Thin asphalt overlays are a time-proven method for extending the life of pavement structures that are still in serviceable shape.

For the most part, Subsection 401.03.10, Spreading and Finishing, of the Standard Specifications carries adequate detail requirements for the spreading and finishing of asphalt pavement courses, and such details are here affirmed by reference thereto.

It is basically desirable that asphalt pavements be spread and compacted for the full width of the course in a single operation. The reason for this is that circumstances sometimes make this accomplishment unreasonable. When possible, in the absence of a full width paver, more than one (1) paver operating in echelon is very desirable.

4.2.1 Asphalt Pavement Material Requirements

Primarily, quality considerations for asphalt pavements are permeability, density, durability and, in the top surface lift, adequate prolonged skid resistant characteristics. The contract documents should be reviewed carefully for aggregate requirements. The District Materials Engineer will provide report on laboratory testing of asphalt mixes. Should any adjustments to payment be required this should be documented on Form <u>CAD-280</u>.

4.2.2 Asphalt Pavement Surface Requirements

Surface requirements are set out in the specifications to insure satisfactory grade, crown slope, thickness and smoothness.

The specifications require that immediately after screeding of any course and prior to roller compaction of courses of plant mix, it shall be the responsibility of the Contractor to check the surface for conformance to these surface requirements and to adjust inequalities at that time that are necessary to produce a finished surface within the tolerances specified for the particular course.

There is a natural tendency on the part of some inspectors to make measurements on the surface of uncompacted or partially compacted courses of mixture in order to be helpful to the Contractor. If the Contractor uses the inspector's measurements as a basis for manipulation of the mixture, any errors,

omissions or misjudgments made by the inspector might be reflected in the Contractor's operations. The inspector's observations of the Contractor's required progress measurements and manipulations could be informative, but in no case should the inspector actually make these measurements for use by the Contractor.

After compaction, sections of courses found by the Engineer to be exceeding the allowable tolerances shall be corrected by the method provided in the specifications at no additional cost to the State.

On all pavement projects, the pavement smoothness will be measuremented after final compaction of the mixture to determine necessary corrections and to reflect conformance to surface requirements. These measurements are to be taken in accordance with Sections 401 and 403 of the Standard Specifications. Pavement smoothness is measurements are recorded as a Mean Roughness Index (MRI), tolerances for the MRI based on pavement categories are shown in Subsection 403.03.2.1 of the Standard Specifications. A smoothness report provided by Research Division should be used to document pay factor adjustments for pavement smoothness. An example of the <u>Research Division MRI Smoothness Incentive Report</u> is found in the <u>Forms Section</u> of this Manual.

The equipment used for smoothness measurement is called an inertial profiler. Inertial profilers allow for high speed measurements and work well on long sections of pavement that need to be tested under traffic. The measurement device as well as the operator must be certified. The procedure for measuring the pavement MRI is outlined in Section 401.02.6.8 of the Standard Specifications.

Even though normally required on paving projects, grade stakes or other grade reference points and maximum deviation from grade and cross-section may not be required on all projects. On widening and overlay projects, the specifications allow variances in the maximum deviation from grade depending on the particular type of construction involved in the project. When only one intermediate lift is required, or when only a leveling and surface lift is required, or when only a surface lift is required, allowances are different than those required on full depth construction projects. The Project Engineer and Paving Inspector should review the requirements of the contract, especially Subsection 403.03.2, Smoothness Tolerances, of the Standard Specifications.

The above inspection procedures are considered necessary for high quality construction. Full cooperation and effort in maintaining high quality inspection procedures is anticipated.

Day to day smoothness records are to be used to determine necessary corrections of deficiencies in the course being laid, and then must reflect that corrective action has been taken or that action is necessary under the provisions of Subsection 105.03 of the Standard Specifications to determine the appropriate correction, adjustment or replacement.

A summary of the smoothness record checks made on the completed surface of each course after correction of deficiencies must be available at the time of the final inspection indicating that the work performed is in reasonably close conformity with the requirements of the specification.

The summary of these smoothness record checks are to be kept current for each completed course, and available for inspection in the project office.

4.2.3 Control and Workmanship of Asphalt Pavements

- A. <u>Know Your Job and the Plans and Specifications</u>. One of the first things the bituminous paving inspector and any assistants should do is to make themselves completely familiar with all applicable portions of the plans and specifications for the particular job. If you are not present at any pre-construction or pre-paving meetings, become familiar with comments, questions, agreements, etc. that may have been discussed at these meetings.
- B. <u>The Plant</u>. The specifications provide in considerable details the requirements for individual units of equipment and combined plant operation for the plant to be used to produce the bituminous mixture.

The quality of the finished bituminous pavement will be reflected by the degree of conformance with these specification requirements for the plant equipment and operation.

Most modern day plants are efficient when properly assembled and operated, and recently much more emphasis has been placed on the qualities of performance being the responsibility of the Contractor.

C. <u>Transporting Mixed Materials</u>. The asphalt mixture is, of course, transported from the Asphalt Plant to spreading operations by trucks. Before any material is loaded into the trucks at the plant, the paving inspector should have determined that the vehicles meet the requirements of Subsection 401.03.3 of the Standard Specifications.

In spite of the fact that each truck should be equipped with a cover, the problem of temperature control of the mixed material may become acute because of the distance hauled, time lost because of equipment breakdown, and the ambient temperature.

D. <u>The Paver</u>. Several types and makes of pavers are used, and all of them may be capable of providing satisfactory surface finishes. The various types of paving machines differ primarily in the methods used in striking off, compacting and smoothing the surface.

The inspector should be familiar with the mechanical features of the type of paver to be used on the job in order that an intelligent appraisal of the condition and adjustment of the machine can be made. Handbooks and literature containing the various details and the operating instructions are available from the manufacturer. The inspector may be interested in obtaining copies of these instructions from the Contractor or the manufacturer.

Paving machines using the tamping bar and fixed screed principles require rather precise adjustments of clearances and movements. The size shape, length of the stroke and extension of the stroke of the tamper bar below the screed are critical factors in obtaining proper compaction. The condition of the screed plate and its adjustment for crown are very important in achieving a smooth, uniform surface. The clearance between the tamper bar and leading edge of the screed must be checked for proper adjustment. The speed of the engine, which drives the tamper bar must be checked to determine if the tamper bar is operated at the correct number of strokes per minute. With the paving machines using a transverse oscillating screed to strike off the mix, followed by a vibrating screed plate which compacts and smoothes the mix, it is essential that the oscillating screed is free of excessive play and is correctly adjusted

for crown and tilt. For best results, the vibrator on the screed plate must be operating at the correct frequency.

Machines using an electrically vibrated screed to strike off, compact, and smooth the mix must be checked to insure that all vibrators are set to deliver vibrations of equal amplitude. The screed plate should be checked for signs of excessive wear, and the engine speed determined to insure correct adjustment of the governor. The immobile foot in front of the screed, which serves to push the mixture under the screed and assists the screed in striking off, should be checked for proper height.

On all track-laying machines, correct adjustment of the track linkage is essential for a smooth operation. A poorly adjusted track, or a badly worn one, can produce an uneven, "choppy" pavement surface. Observations of the machine in motion will usually detect any defects in the track of the drive mechanism.

On rubber-tired pavers, all pneumatic tires must be inflated to the correct pressure, and the chain drives must be examined to insure that chains are adjusted properly, without excessive slack.

- E. <u>On the Grade</u>. The mere fact of an inspector's presence at the site of the paving operation may help a little, for a while.
 - 1. <u>Taking Part</u>. The inspector should always be alert to see that good practices are followed by the construction crew and workmanship is not sub-standard. Each little detail of workmanship in itself may seem insignificant but when all the details are added together, they assume considerable magnitude. It is attention to each of these seemingly minor details that can make the difference between a good job and a superior job.
 - 2. <u>Checking of Equipment</u>. The responsibility for providing equipment which produces the desired results is that of the Contractor. However it is the duty of the paving inspector, in addition to inspection of the construction operation, to inspect and approve each unit of equipment as to its conformance with the requirements set out in the contract. Prior to beginning the paving operation the paving inspector will review, with the Contractor's superintendent, the equipment to be used and the condition of the equipment. Should the Contractor bring additional equipment to the project the inspector should inspect the equipment upon it's arrival. If any equipment malfunctions it shall be immediately repaired and re-inspected.
 - 3. <u>Weighing and Verification</u>. The bituminous mixture is weighed at the plant. A haul ticket is to be made out, delivered to the paving inspector and validated and processed in accordance with this Manual.

The haul tickets are to be collected by the inspector as each load of material is delivered to the paver. Handing of the tickets to a Contractor employee for accumulation and passing to the inspector later in groups is not to be permitted. The inspector must validate (sign) haul tickets for each vehicle before the material is incorporated in the work.

- 4. <u>Tack Coat</u>. Tack coat for asphalt mixtures shall be one from the Department's APL under the category "Non-tracking Tack for Asphalt Mixtures" unless otherwise noted in the contract documents. Tack coat shall be applied to previously placed asphalt and between lifts, unless otherwise directed by the Engineer. Tack coat shall be applied with a distributor spray bar. A hand wand will only be allowed for applying tack coat on ramp pads, irregular shoulder areas, median crossovers, turnouts, or other irregular areas. Application rate for tack coat shall be 0.05 to 0.10 gallons per square yard. Emulsified asphalt used for tack coat shall not be diluted. Construction requirements shall be in accordance with Subsection 407.03 of the Standard Specifications. See Section <u>4.7.1 Tack Coats</u> of this Manual for more information.
- 5. <u>Importance of Grade</u>. The paving inspector should reference Subsection 401.03.6 of the Standard Specifications regarding surface preparation prior to placement of the bituminous mixture.

The inspector should also make certain that the surface upon which the asphaltic paving is to be placed is within the specified tolerances for grade and section. The smoothness of the finished riding surface is dependent to a large degree on the smoothness of each of the preceding courses.

6. <u>Spreading the Mixture</u>. The Contractor is to establish the rate of spread such that the compacted course will be within specified tolerances and check to see that the compacted course is in compliance.

Spreading temperatures are to conform to the Specifications and should be high enough to provide suitable workability for placement and to allow sufficient time for proper compaction prior to cooling.

The use of a motor grader for spreading can be permitted only in areas inaccessible to a paving machine or for preliminary leveling and correcting irregularities in an existing base or surface prior to placing the first overall course of asphaltic concrete.

In machine spreading of bituminous mixture, if any unsatisfactory mechanical conditions exist in the paving equipment being used, the quality of the finish course will suffer. If a condition exists in a paver that is causing difficulty in the spread, the difficulty will usually be magnified or aggravated with higher paving speeds. In either case remedial action should be taken immediately upon discovery.

7. <u>Automatic Screed Control</u>. Most Contractors have pavers equipped with an automatic screed control device. This device is designed to maintain desired grade and slope by raising or lowering, automatically, the pivot points of the screed arms to control the screed angle of attack. The elevation is controlled by reference independent of the tractor unit of the paver, which may be a stringline, a traveling ski or a matching shoe on uncompacted material when pavers are operated in tandem.

The five main components of an automatic screed control are the sensor, pendulum, control box, command panel, and motors or cylinders to change the screed tilt, automatically compensating of road surface irregularities. The automatic screed control device was designed to improve "gradeline" smoothness and "sway" in cross-section.

When an approved profile averaging device is permissible under the contract, it shall be a device capable of working in conjunction with a taut string or wire set to grade, or ski-type device with extreme contact points at least 30 feet apart. Approved noncontacting type profile averaging devices are laser type ski devices with at least four referencing mobile stations at a minimum length of 24 feet, or an approved equal.

The matching shoe is designed to match a previously laid uncompacted mat and can also be used in conjunction with an approved profile averaging device to match a gutter grade, when slope control is not specified, providing the gutter grade is satisfactory. Remember that the paver will only lay to the accuracy of the reference. It will not correct any errors in the reference.

F. <u>Shoulder Wedge.</u> On surface courses the Contractor shall attach a device to the screed of the paver that confines the material at the end gate and extrudes the asphalt material in such a way that results in a compacted wedge shape pavement edge of approximately 30 degrees, but not steeper than 35 degrees. The device shall maintain contact between itself and the road shoulder surface and allow for automatic transition to cross roads, driveways, and obstructions. The device shall be used to constrain the asphalt head reducing the area by 10% to 15% increasing the density of the extruded profile. Conventional single plate strike off shall not be used.

Short sections of handwork will be allowed when necessary for transitions and turnouts, or otherwise authorized by the Engineer.

Information on approved devices can be obtained from the State Construction Engineer. If the Contractor has a similar device they want to get approved, the Contractor shall provide proof that the device has been used on previous projects with acceptable results, or construct a test section prior to the beginning of work and demonstrate wedge compaction to the satisfaction of the State Construction Engineer.

- G. <u>Rolling of Asphaltic Pavements</u>. Proper and adequate rolling is one of the secrets of successful asphalt paving. Different mixes may require considerably different levels of compactive effort and thus different compaction equipment and rolling patterns. Different types or combinations of rollers may be needed to achieve a required level of density. At the option of the Contractor, a rolling pattern may be established at the start of the particular paving project using one or more roller test strips.
- H. <u>Surface Smoothness</u>. After compaction, surface checks are to be made and recorded in field notes to insure conformance with the requirements of the contract for grade, typical section, and surface smoothness. The smoothness of the surface lift will be determined by using an Inertial Profiling System (IPS) to measure and record roughness data in each designated location. Roughness data for each longitudinal profile will be reported as a Mean Roughness Index (MRI). MRI is calculated by averaging the International Roughness Index (IRI) values from the two individual wheelpath profiles.

If any corrections are indicated by such surface checks, they must be made and documented prior to placing the subsequent layers, or by approved grade raise(s). In each case, the corrections in the surface of the course are to be made in accordance with the specifications.

I. <u>General Clean-Up at Completion of Paving</u>. During the course of paving operations there normally are small scattered piles of material deposited at intervals along the roadway. Also, at the end of each day's operation the laydown machine will usually be cleaned in an area within the right of way. These deposits of unused material and other debris scattered along the project should be removed and disposed of as directed by the Engineer as soon as possible after the completion of the paving operation.

It must be remembered that unauthorized surplus or wasted material in any appreciable quantity must be measured in a manner determined by the Engineer to be reasonably accurate, documented in the inspector's field notes and Inspector's Daily Report, and deducted from measured quantities.

4.2.4 Inspection Report for Asphalt Laydown Equipment

Prior to beginning the laydown operation on the project, the paving inspector and the Contractor's representative shall inspect the Contractor's equipment. An appropriate check list is a convenient way of documenting inspection for such characteristics. The MDOT Asphalt Field Manual provides a standard for recording and reporting the inspection of asphalt laydown equipment. It is important that any action taken by the inspector toward correction of any equipment deficiencies and/or rejection of any equipment be documented.

The Asphalt Roadway Inspection Checklist located in Appendix 2 of the MDOT Asphalt Field Manual, is to be completed and signed by the paving inspector and reviewed and signed by the Project Engineer. This form is to be updated as necessary when equipment is removed and/or added to the project.

4.3 MAINTAINED ASPHALT PAVEMENTS

Unlike normal asphalt pavement, the MDOT inspector has limited responsibilities when the contract requires maintained asphalt pavement. The inspector will report the Contractor's daily activities for the daily diary, monitor the Contractor's traffic control plan, closely monitor the operations of the Inertial Profiling System and perform other duties as directed by the Engineer.

The Contractor's responsibilities are defined in the special provisions for Maintained Asphalt Pavement in the contract proposal.

4.4 OPEN GRADED FRICTION COURSE

<u>General</u>. Open Graded Friction Courses have an aggregate structure that provides permeability and a high degree of friction. The permeability allows water to flow through the pavement to improve frictional behavior and reduces spray from vehicle tires during wet conditions. They are typically placed as one lift on the surface course of the travelled lanes

Materials. Material requirements are addressed in Subsections 402.02 of the Standard Specifications.

- 1. <u>Mineral Aggregate</u>. The mineral aggregates should be handled and stockpiled in the same manner as the hot/warm mix aggregates.
- 2. <u>Bituminous Material</u>. A PG 76-22 asphalt binder will be used for all OGFC mixtures.

Design. The gradation of the aggregate and the percent asphalt must conform to the requirements of the job-mix formula.

<u>**Plant Operations.</u>** Generally, the plant operations are the same as for the hot/warm bituminous pavements.</u>

<u>Road Operations</u>. The road operations for the OGFC are the same as for the hot/warm bituminous pavement except as discussed below.

At the beginning of placement for the lift, the Contractor shall construct a trial section of a maximum of a maximum of 250 tons of mix, for the purpose of establishing and evaluating consistent mixture and compaction properties. The Contractor shall determine the production point at which the mix shall be sampled during trial section construction. This sample does not have to be selected by the formal random selection procedures used during actual production, but should be representative of the mix produced.

There are no acceptance testing requirements for field density or smoothness on OGFC pavements.

The mixture shall not be placed when weather conditions prevent the proper handling and finishing or the surface on which it is to be placed is wet or frozen. At the time of placement, the air and pavement surface temperature limitations shall be equal to or exceed 55°F and rising. OGFC placement should be avoided when the paving window, based on temperature, is limited.

Tack coat for OGFC shall be one from the Department's APL under the category "Open Graded Friction Course (OGFC) Asphalt Tack Materials." PG 76-22 binder shall meet the requirements of Section 702 of the Standard Specifications.

Tack Coat for OGFC shall be applied with a distributor spray bar at the applied rate of between 0.10 and 0.14 gallons per square yard. The application rate of the tack coat shall result in complete and uniform coverage of the underlying lift in which the OGFC will be placed.

The tack coat for OGFC should be allowed to break, cool and/or cure until a point in time that the tack coat does not pick-up or track due to traffic from trucks or the paving equipment. It should be pointed out that breaking, cooling, and/or curing times of the tack coat may vary based on the environmental conditions at the time of placement.

<u>**Records and Reports.</u>** Daily entries should be made in the Inspector's Daily Report describing locations received from the Project Engineer, instructions given to the Contractor, unusual conditions, and other items of interest.</u>

Applicable work sheets, forms, and reports should be maintained and submitted as for open graded friction courses.

4.5 COLD BITUMINOUS PAVEMENTS.

General. The cold bituminous asphaltic concrete is a mixture similar to the hot/warm asphaltic concrete except that the asphaltic material and additives, when required, are of such nature that the mixture may be transported, stockpiled, and laid cold. This type of mixture is most commonly used for pavement repair work but can be used as a resurfacing course over an existing pavement.

Ordinarily, when the quantities are sufficient to warrant setting up a plant on the project, hot/warm mix asphalt will be specified. Cold mix pavements are generally not as water tight as warm and hot mix pavements.

Materials. Material requirements are addressed in Subsections 404.02 of the Standard Specifications.

- 1. <u>Mineral Aggregate</u>. The mineral aggregates should be handled and stockpiled in the same manner as the hot/warm mix aggregates.
- 2. <u>Bituminous Material</u>. The liquid bituminous material should be of the type that will remain fluid at air temperature sufficiently long enough to permit completion of the construction operations.

Design. The gradation of the aggregate and the percent asphalt must conform to the requirements of the job-mix formula.

<u>**Plant Operations.</u>** Generally, the plant operations for the cold bituminous pavements are the same as for the hot/warm bituminous pavements except for the drying and mixing operations.</u>

The temperature of the mineral aggregate at the mixer must be considerably lower for the cold mix. The mixing temperature limits are usually set forth in the specifications. These temperature limits must be strictly observed to insure a mixture that will remain in a workable condition from the time it is mixed until it is incorporated in the pavement. The temperature may be controlled by heating and drying the aggregate, and then cooling back to the required temperature; or by controlling the heat and rate of flow of the aggregate through the plant so that the aggregate will arrive at the mixer properly dried and at the specific temperature.

The sequence of introducing the aggregate and the bituminous material, and approved primer or water, if specified, into the mixer, and the length of the mixing period should be such that a uniform and workable mixture conforming to the Job Mix Formula is produced.

<u>Road Operations</u>. The road operations for the cold bituminous mixes are the same as for the hot/warm bituminous pavement except as discussed below.

The specifications permit spreading cold bituminous mixtures with a motor grader. When a motor grader is to be used for spreading, the mixture is to be dumped and windrowed in accordance with Subsection 404.03.6 of the Standard Specifications.

When the mixture is ready for spreading, it shall be uniformly windrowed, spread, finished, and compacted in the same manner as the hot/warm mix pavement. No succeeding course is to be applied until the mixture has cured sufficiently as required by the plans and specifications.

<u>**Records and Reports.</u>** Daily entries should be made in the Inspector's Daily Report describing locations received from the Project Engineer, instructions given to the Contractor, unusual conditions, and other items of interest.</u>

Applicable work sheets, forms, and reports should be maintained and submitted as for hot/warm mix asphalts.

4.6 STONE MATRIX ASPHALT

General. Stone matrix asphalt (SMA) is designed to resist rutting and improve durability by using a structural basis of stone-on-stone contact. Typical HMA/WMA pavements rely on asphalt binder properties to resist deformation. Because aggregates do not deform as much as asphalt binder under load, this stone-on-stone contact greatly reduces rutting.

SMA mixes also contain stabilizing fibers to help reduce "mix draindown". SMA mixes have a high asphalt binder content and without the stabilizing fibers the asphalt binder would drain off the aggregate and down to the bottom without the fibers as the mix sits in the storage silos, transport trucks, and after it is placed. A laboratory test is run during mix design to ensure the mix is not subject to excessive draindown.

Materials. Material requirements are addressed in Subsections 405.02 of the Standard Specifications.

- 1. <u>Mineral Aggregate</u>. The mineral aggregates should be handled and stockpiled in the same manner as the hot/warm mix aggregates.
- 2. <u>Bituminous Material</u>. A PG 76-22 asphalt binder will be used for all SMA mixtures.

Design. The gradation of the aggregate and the percent asphalt must conform to the requirements of the job-mix formula.

<u>**Plant Operations.</u>** Generally, the plant operations for the SMA pavements are the same as for the hot/warm bituminous pavements except that provisions must be made for the addition of stabilizing fibers.</u>

<u>Road Operations</u>. The road operations for the SMA mixtures are addressed in Sections 401 and 403 of the Standard Specifications including items as discussed below.

Pneumatic-tired rollers shall not be permitted for compacting SMA mixes.

The density requirement for each completed lift on a lot to lot basis from density tests performed by the Department shall be 93.0 percent of maximum density.

The mixture shall not be placed when weather conditions prevent the proper handling and finishing or the surface on which it is to be placed is wet or frozen. At the time of placement, the air and pavement surface temperature limitations shall be equal to or exceed 55°F.

<u>**Records and Reports.</u>** Daily entries should be made in the Inspector's Daily Report describing locations received from the Project Engineer, instructions given to the Contractor, unusual conditions, and other items of interest.</u>

Applicable work sheets, forms, and reports should be maintained and submitted as for hot/warm mix asphalts.

4.7 TACK COATS AND PRIME COATS

Form <u>CAD-240</u> should be used for documenting Tack Coat and Prime Coat pay items and application.

4.7.1 Tack Coats

A tack coat consists of bituminous material applied at a specified rate per square yard upon an existing pavement surface to increase bond between existing surface and new surface. If tack coat coverage is too heavy, the tack coat may bleed through the subsequent layer or act as a lubricant between the two surfaces and cause the top surface to slip under the rollers. If the tack coat is not adequate, the surface course will not bond properly and may slip under the roller, causing waving, checking or cracking.

The requirements for equipment used to apply tack coats can be found in Subsection 410.03.3 of the Standard Specifications. This equipment should be inspected to insure it is functioning properly and must be approved by the Engineer prior to use. The distributor must be calibrated and a Distributor Calibration Worksheet as outlined in Subsection 4 in Section <u>4.8 Bituminous Surface Treatment</u> of this Manual must be provided. The distributor is required to have adequate pressure devices and suitable manifolds to provide constant and even distribution for the entire length of the spray bars; and have positive cutoff to prevent dripping from the nozzles. Nozzles require frequent maintenance to insure they produce a uniform spray and do not get clogged with material. Most distributors are also equipped with a spray wand that can be used to coat irregular areas. This wand should not be used as the primary method to distribute tack coats.

Just before applying tack coat, the surface to be coated must be swept to remove all dirt, or other objectionable material which might prevent proper bonding of resurfacing material to existing surface. The roadway surface must be dry and the ambient temperature must not be below that specified for the course to be placed. A light application of asphalt for tack coat is usually placed by a rapidly moving distributor. When shown as a separate pay item, material in the distributor must be measured by use of the calibrated dip stick both before and after each application (see Subsection 4 of Section 4.8 Bituminous Surface Treatment of this Manual). The distributor should be in level position when checked. Also, the temperature of asphalt should be recorded at the beginning of each shot. By determining the area over which material has been placed and correcting the volume of asphalt to 60°F, the application rate per square yard is computed and number of gallons used can be determined for payment.

In the event the tack coat is applied by a fast moving distributor, there may be a fine spray of bitumen that could speck or spot cars if opposing traffic is permitted to continue during application. For this reason, all traffic should, if at all practicable, be halted by flaggers during the few minutes that application is being made on one-half the roadway.

Responsibility for the length of tack coat applied in advance of resurfacing placement rests with the Contractor. However, it should be brought to the Contractor's attention, that a "Live" tack will be required at the time of placing resurfacing mixture. When traffic or other conditions are such that the length or time of application has reduced the effectiveness of tack, it is the Contractor's obligation to rejuvenate the tack at no additional cost to the State.

4.7.2 Prime Coats

A prime coat consists of a low viscosity bituminous material applied at a specified rate per square yard directly upon the surface of a base course which is to receive some type of bituminous wearing surface. Its purpose is to penetrate the existing surface, to coat and bond any loose mineral particles to the surface, to provide a dust free surface for subsequent bituminous applications, and to promote adhesion between the base and a subsequent bituminous treatment.

Before a base is primed, it is to be checked for smoothness and compliance with typical cross-section. Immediately before a prime coat is applied, the surface of the base should be cleaned of foreign material and free from excess loose fines. Penetration will be more rapid and complete if the surface is slightly moist. Free water should not be on the surface nor should the base contain a considerable amount of moisture.

The optimum quantity of prime is a variable. It depends on such factors as the type of base material, amount of fines, texture of surface, and moisture content of the base. Although an application rate used for estimating purposes will usually be shown in the contract, it is the responsibility of the Engineer in the field to determine an optimum rate, depending on the nature of the base, between 0.15 and 0.50 gallons per square yard. The rate is generally set by knowledge of the optimum quantity on other bases of similar nature and characteristics. If the contract requires that traffic be maintained, the prime coat is to be blotted with sand-clay or other friable material. The Contractor is responsible for maintaining the primed surface in satisfactory condition through the curing period and until covered by a subsequent layer or course. The curing time for the prime coat is very important if the prime material is a cut-back asphalt. The prime material contains a petroleum solvent and "cures" when the solvent evaporates and leaves only asphalt. If a "green" prime is covered, it is likely that it will "bleed" through the overlying course.

Certain limitations have been established by Standard Specifications to control priming operations.

- 1. Emulsified and cut-back asphalt prime material shall only be applied when the air temperature is above 70°F.
- 2. Asphalt cement prime material shall only be applied when the air temperature is above 75°F.
- 3. Cut-back asphalt shall not be placed during the period between October 15 and March 1, unless specific authority is given by the Chief Engineer under the provisions of Subsection 105.01 of the Standard Specifications.
- 4. No prime shall be placed when weather or soil conditions prevent proper placement and retention of the material.

4.8 BITUMINOUS SURFACE TREATMENT

- 1. <u>General</u>. Bituminous surface treatment consists of applying a bituminous material, at a specified rate per square yard, and immediately placing a single, uniform application of aggregate on the bituminous material. The aggregate is promptly embedded in the bituminous material by rolling. The surface treatments may consist of a single or double application of bituminous material and aggregate. They are usually applied to a prepared non-asphaltic base and are for the purpose of waterproofing the base and protecting it from the abrasive action of traffic. In a single surface treatment, the treatment consists of only one application of a seal aggregate spread uniformly over the bituminous material. In a double surface treatment, the first treatment of "mat" consists of coarse cover aggregate spread uniformly on the bituminous material. The second treatment consists of applying bituminous material to the "mat" and then spreading seal cover aggregate.
- 2. <u>Materials</u>. All materials must be inspected and tested for compliance with the requirements of the applicable Specifications prior to their use.

Aggregate will usually be tested and approved at the source. Surface treatment inspectors should assure themselves that the necessary tests have been performed. If the material has been shipped without being tested, the inspector should notify the District Materials Engineer so that the material can be sampled, tested and the necessary test reports issued.

The inspector should inspect each load of coarse aggregate visually for cleanliness and segregation even though the material is being delivered from tested stock. Extremely dirty or dusty stone should not be used until the results of a retest by the Testing Division are known. Dust prevents proper adherence between the asphalt and the aggregate.

- 3. <u>Weather Limitations</u>. An important factor which must be considered when constructing penetration type surface is the weather. Construction operations should not proceed when the existing surface is wet, when it is foggy, raining or threatening rain, or when the air temperature is below 75°F for asphalt cements and 70°F for emulsified or cut-back asphalts. Cut-back asphalt shall not be placed between October 15 and March 1. Between November 1 and March 1 special authorization is required to place bituminous materials for surface treatment. Refer Subsection 410.03.2 of the Standard Specifications for more details.
- 4. <u>Equipment</u>. The equipment required for surface treatments is listed in Subsection 410.03.3 of the Standard Specifications. The inspector should ascertain that all required equipment is on the project and in proper working order before seal or surface treatment operations begin.

The distributor truck used for application of the bituminous material must be calibrated by the MDOT prior to being used on the project. An "Innage Table" will be produced during the calibration process that will correlate the stick measurement in inches to the gallons remaining in the tank. This table is specific to the distributor, and the serial numbers on the tank and table must be compared. Distributors can be calibrated at the MDOT District 6 Laboratory prior to use if an innage table is not available. In no case should the inspector use the gauges on the truck to determine quantity for final pay.

- 5. <u>Construction Methods</u>. The construction operations are very important in surface treatment work. Even the most precise planning and design will be of no value if the construction operations are not properly carried out, such as:
- a. <u>Clean the Surface</u>. The existing surface should be thoroughly cleaned with a rotary power broom to remove dirt and dust.
- b. <u>Traffic Control</u>. Traffic control is essential to the construction of this type surface. Traffic must be controlled in such a manner that interruption and damage to the work will be avoided, that construction personnel will be protected and that the traffic itself will be protected from hazards created by construction operations.
- c. <u>Application of Bituminous Material</u>. Just prior to the application of the bituminous material, the quantity of material in the distributor tank should be determined using innage table provided by the Contractor. For this determination the distributor should be parked with the tank in a level position. After application to the bituminous material has been made, the quantity of material remaining in the distributor should be determined.

The pay quantity of bituminous material is to be based on the volume in gallons at 60° F. Therefore, the actual temperature of the material in the tank must be determined. The latest version of the Material Division Inspection, Testing, and Certification Manual contains volume correction factors for bituminous material at various temperatures. The factor obtained from the applicable table multiplied by the gallons measured will yield the actual gallons used at 60° F.

Due to the fact that bituminous materials cool rapidly, the distribution of the material should be coordinated with the spreading of the cover aggregate. The time lapse between the distribution of the bituminous material and the application of the cover aggregate should be kept to an absolute minimum in order to obtain greater coating action and hence better bond with aggregate.

The transverse joints on surface treatments should be carefully made so that they will not be rough and unsightly. This can be done successfully by starting and stopping each application of bituminous material and cover aggregate on a sheet of building paper.

The longitudinal joints for surface treatments which are not placed to the full width of the roadway in a single pass should also be carefully controlled. Since it is not practical to use building paper on these joints, it is considered better to have a slight buildup due to overlapping the adjacent passes than to have a gap in the surface.

The length of "shot" to be made depends both on the capacity of the distributor and the volume of the aggregate trucks available. Assume for example:

3 - 10 cu. yd. trucks 1200 gallon distributor Seal aggregate to be applied at 0.27 cu. ft. per sq. yd. Asphalt cement to be applied at 0.30 gal. per sq. yd. Temperature of A.C. 350° F. Width of Application - 24 feet or 2.67 sq. yd. per ft. 3 x 10 x 27 / 0.27 = 3,000 sq. yd. aggregate available 3,000 / 2.67 = 1,124 ft. shot with aggregate controlling 1,124 x 2.67 x 0.30 = 900 gal. A.C. at 60°F 900 / 0.904 = approximately 1,000 gal. at 350°F. OK to make 1,124 ft. shot

d. <u>Application of Cover Aggregate</u>. The application of the cover aggregate should be scheduled so that the time lapse before the bituminous material is covered will be the absolute minimum. Care should be exercised in the spreading of the aggregate so that it is spread to a depth of approximately one particle thickness. Since excess aggregate will not adhere to the bituminous material the rate of application should be carefully evaluated. The desired uniform rate of application can be obtained by using an aggregate spreader. If the spreader has been properly adjusted and if it is operated at constant speed, seldom should there be a reason for spreading any cover aggregate by hand.

- e. <u>Rolling</u>. The rolling operation should immediately follow the application of the aggregate material in order to embed the particles while the bituminous material is still soft and tacky. The operation should begin at the outside edge of the surface and progress toward the center. Rolling should be discontinued when the bituminous material has set or hardened.
- f. <u>Excess Cover Aggregate</u>. When placing surface treatments in half widths, the loose aggregate should be removed from along the longitudinal joint before the adjacent lane is surfaced.

Usually there will be some loose aggregate particles on a new surface after the rolling operation has been completed. It is recommended that this loose aggregate should be broomed off in the cool part of the morning when the bituminous material is hard and the bonded aggregate particles will not be disturbed.

6. <u>**Records</u>**. It is essential that the necessary field data, calibrations, measurements and material spreads ordered by the Engineer and applied be recorded, dated, and verified by the signature of the employee (Inspector or Engineer) making the order, calibration, measurement, etc. This data is to be recorded on tickets, forms, and field notes, as applicable. Such recordings and verification are required as the work progresses. Entries are to be made by area as rates of application are determined.</u>

Form <u>CSD-724</u> includes the quantities and application rates of aggregates used in bituminous surface treatments. It is self-explained by the wordings at the top of each column. Form <u>CSD-724</u> is in the <u>Forms Section</u> of this Manual.

Source information for cover aggregates is to be recorded by the ticket system and recorded as final data on Form <u>CSD-724</u>.

Bituminous materials are to be recorded in field notes as source documents, and tabulated on Form $\underline{\text{CSD-724}}$ as final data.

The ticket numbers for each load of cover aggregate for a "shot" are to be recorded in the field notes, along with the record of asphalt measurements, in order that the quantity can be identified with the "shot" when recording on Form<u>CSD-724</u>.

To implement the recording of source data for bituminous materials, and identification of cover aggregate, the Engineer should prepare, ahead of actual work, columnar headings, sketches, dimensions, calculated areas, etc., in field notes in order that all pertinent data may be properly recorded during application, for transfer to Form <u>CSD-724</u>.

Material transferred from other projects in SiteManager should be explained in the field notes and the remarks section of the report form.

All pertinent data from the inspector's field notes should be posted periodically, at the earliest practicable time, on Form <u>CSD-724</u> such that the Project Office records will provide an up-todate and accurate tabulation of the quantities satisfactorily placed to date. Each such entry on Form <u>CSD-724</u> is to be initialed by the person making the entry. The original copies of the report (Form <u>CSD-724</u>) are to be certified by the Project Engineer and maintained in the project files as each sheet is completed, and are also to be submitted with the final plans after completion of the work.

Separate reports should be completed for each grade of bituminous material and each type of aggregate used. That is:

- (a) Separate reports for prime material.
- (b) Separate reports for asphalt cement and coarse cover aggregate.
- (c) Separate reports for asphalt cement and seal aggregate.

Distribution: Original - to be submitted with final quantities data.

Copy - District Engineer

Copy - Project Office File

4.9 ULTRA-THIN ASPHALT PAVEMENTS

<u>General</u>. Ultra-Thin Asphalt Pavements are primarily used for one lift maintenance or pavement preservation projects to extend the service life and correct minor service defects. Extensively cracked and rutted pavements are not good candidates for UTAP overlays.

UTAP can be either Ultra-Thin Hot Mix Asphalt (UHMA) and Ultra-Thin Warm Mix Asphalt (UWMA). The type asphalt mixture (UHMA or UWMA) is selected by the Contractor, and once selected, must be used throughout the entire project.

Thin overlays cool very quickly and at times are difficult to compact. The use of warm mix asphalt (WMA) technology for thin overlays is gaining popularity. The lower temperatures of the WMA mean the mix cools slower, allowing more placement and compaction time.

Materials. Material requirements are addressed in Subsections 411.02 of the Standard Specifications.

- 1. <u>Mineral Aggregate</u>. The mineral aggregates should be handled and stockpiled in the same manner as the hot/warm mix aggregates.
- 2. <u>Bituminous Material</u>. The bituminous material requirements are the same as hot/warm mix binders.

Design. The gradation of the aggregate and the percent asphalt must conform to the requirements of the job-mix formula.

<u>**Plant Operations.**</u> Generally, the plant operations for the UTAP pavements are the same as for the hot/warm bituminous pavements.

<u>Road Operations</u>. The road operations for the UTAP mixtures are the same as for the hot/warm bituminous pavement except as discussed below.

Prior to placement of UTAP, the Contractor shall determine the existing surface Mean Roughness Index at no additional cost to the State. The finished UTAP lift shall have a mean roughness index no greater than that of the existing surface.

The density requirement for UTAP shall be roll to refusal. Refusal is defined as the number of roller passes to maximize the in-place unit weight of the mixture. On the first day of production and every three production days thereafter, a 500-foot test strip shall be evaluated to determine the required number of roller passes. Three random sites within the test strip shall be selected and monitored with the nuclear density gauge to determine refusal.

<u>**Records and Reports.</u>** Daily entries should be made in the Inspector's Daily Report describing locations received from the Project Engineer, instructions given to the Contractor, unusual conditions, and other items of interest.</u>

Applicable work sheets, forms, and reports should be maintained and submitted as for hot/warm mix asphalts.

CHAPTER 5 - RIGID PAVEMENTS

5.1 GENERAL

This work shall consist of a pavement composed of concrete, with or without reinforcement as specified, constructed on a prepared subgrade or base course in accordance with these specifications and in reasonably close conformity with the lines, grades, thickness, and typical cross sections shown on the plans or established by the Engineer.

5.1.1 Concrete Pavement

The types of pavement are plain or non-reinforced, conventional or reinforced (RCP) with welded wire fabric (mesh) with joints, or continuously reinforced (CRCP). The latter type is reinforced with deformed steel bars or extra heavy welded wire fabric.

The pavement will be constructed of air-entrained concrete of the dimensions indicated on plans and in the contract documents.

Concrete is a designed combination of sand, gravel, crushed rock, or other aggregates held together by a hardened paste of cement and water. When mixed thoroughly, these ingredients make a plastic mass, which can be cast or molded to a desired size or shape. Upon hydration of the cement by water, concrete becomes stone-like in strength and hardness.

With proper design, mixing and placing, concrete of almost any strength may be obtained and which may be used for almost any purpose. It is the responsibility of those in charge of construction work to make sure that concrete is of uniformly good quality. The extra care and efforts required to achieve this objective are small in relation to the benefits. Good engineering dictates acceptance of the best when the best is procurable at no extra cost. This axiom is especially true of concrete for the best costs usually no more than mediocre. All that is required to achieve the best is an understanding of the basic principles of making good concrete and close attention to proven practices during construction. Improved practices and techniques have added greatly to our ability to produce good concrete, and a modern formula for successful concrete production must include common sense, good judgment, and vigilance.

Concrete is sold and accepted on the basis of certain specified qualities, such as cement factor, consistency, strength, etc. It is of the utmost importance, therefore, that standard procedures, based on experience and found reliable, be used from securing the sample through all phases of determining and reporting test results. The importance of sampling should be apparent. If a sample is really representative, and if test specimens are made and handled properly, then test results may be considered to reflect the quality of the concrete. On the other hand, samples which are carelessly taken cannot yield reliable results no matter how well the tests are made. The exercise of informed judgment in selecting samples is indispensable. This holds true not only for concrete but for sampling and testing all the materials that will ultimately be used in making concrete.

Accepted methods for sampling, molding, curing, and testing concrete and its related materials are set out in the Material Division Inspection, Testing, and Certification Manual, as well as AASHTO and ASTM Standards.

Listed below are some terms pertaining to concrete and their definitions:

<u>Cement Factor</u> - A value to show the quantity of cement used per unit volume of concrete. Example - 1.00 C.F. denotes one barrel or four bags cement per cubic yard concrete; 1.50 C.F. denotes 1 1/2 barrels or six bags cement per cubic yard of concrete, etc.

<u>Fineness Modulus (F.M.)</u> - An empirical factor obtained by adding the total percentages of aggregate retained on the Nos. 100, 50, 30, 16, 8, 4, 3/8", 3/4", 1 1/2", and 3" sieves and dividing the sum by 100.

<u>Specific Gravity</u> - The ratio of the weight of a volume of some substance to the weight of an equal volume of substance, usually water, taken as a standard or unit. Example - concrete gravel having a specific gravity of 2.50 means that a cubic foot (solid volume) of this gravel is 2 1/2 times as heavy as a cubic foot of water.

<u>Water Cement Ratio</u> - The ratio of the total weight of water used, including free moisture in the aggregate, to the weight of cementitious material.

<u>Slump Test</u> - A test showing the vertical subsidence, or fall, of fresh concrete from a given height. (The procedure for making this test and its significance are explained elsewhere).

<u>Concrete Cylinder</u> - A specimen, normally six inches (6") in diameter and 12 inches in height, made of concrete that is used in construction, and tested for compressive strength. For concrete mixtures with a maximum aggregate sizes equal to or less than one inch (1"), a specimen four-inch (4") in diameter and eight inches (8") in height is allowed.

<u>Sand</u> - A fine granular material resulting from the natural or mechanical disintegration of rock. Depending on its use, material may be classed as sand if it passes 3/8 inch, No. 4 or No. 10 sieve.

<u>Gravel</u> - The granular, pebbly material, usually retained on a No. 8 sieve, resulting from the natural disintegration of rock.

5.1.2 Construction Requirements

The procedures as established by this Construction Manual will deal primarily with central batching and slip-form continuously reinforced pavement. Refer to Material Division Inspection, Testing, and Certification Manual pertaining to central batching operations and instructions for completing required reports. Occasionally a Contractor may elect to use form type construction and mixers at the site. In these cases, consult the <u>Department's Training Manuals for Inspectors and Technicians</u>. These manuals contain excellent information and have been distributed to every project office.

The subgrade or base at the form line must be at the proper grade and carefully checked to insure a smooth riding surface and the proper thickness of pavement. The results of the final pavement will depend largely on the smoothness of the grade on which it is placed.

Once the base material is approved for line, grade, and thickness, the formless pavement will be placed with either an electronically controlled paver which may or may not ride on the subgrade or a paver that rides directly on the subgrade and depends upon the trueness of the subgrade for its final grade. In the latter case it is imperative that the grade on which the paver tracks ride be at the precise grade specified.

The plant inspector and the paving inspector on the road should synchronize their watches at the beginning of the day so that there will be no mistake or misunderstanding in enforcing the delivery time requirements of the specifications. Before commencing the paving operations, there should be no doubt that the Contractor has enough trucks and the haul distance is short enough that the time interval between delivery loads will not exceed twenty minutes, or fifteen minutes if temperatures above 90°F are expected. Delivery trucks, should be checked for conformity with the Specifications and should be free of accumulations of set concrete. Set concrete must not be allowed to get into fresh concrete that is to be deposited on the grade.

Review the plans sufficiently in advance to determine the locations of key way or tie bars and super elevation so the Contractor is alerted to these requirements, and a suggested method of keeping everyone informed is to place stakes showing the beginning and ending stations.

The inspector's review of the plans, the applicable parts of the Standard Specifications and any Special Provisions concerning the different features of the surged, reinforcing steel and curing prior to starting, will eliminate many problems and the inspector will be alerted to the requirements necessary for a satisfactory finish.

It is important to continuously check the condition of the reinforcing steel ahead of the slipform paver and the line and edge slump while the pavement is being placed. If the Contractor is unable to maintain satisfactory line and grade during paving operations, the Project Engineer should be contacted immediately and the Contractor required to cease operations until suitable means are provided to maintain acceptable line and grade. Edge slump can be controlled by using uniform mix with low slump, proper adjustment of the edge plates on the slipform paving forms and finishers working the edge within the length of the trailing pavement forms instead of behind the forms.

The concrete should be deposited uniformly on the grade to prevent segregation during placing. Any foreign material is to be removed and the concrete finished to the proper cross section as fast as possible to prevent presetting of the concrete.

If occasional excessive edge slump over that permitted by the Specifications is evident, either wood planks or metal forms should be placed against the pavement immediately and the pavement brought to the proper grade. Metal forms usually work better than wood planks as they will lock together and will not cause variations in the pavement edge. Corrective measures should be taken immediately to prevent a recurrence of excessive edge slump.

Be sure that split header boards are being used on continuously reinforced pavement so that the reinforcing steel may be extended past the header board at the proper elevation. Notice that in the CRCP Standards additional reinforcing bars are required at each construction joint and that there is a minimum distance from the laps of the steel where a construction joint may be placed. The inspector should insist that the Contractor provide and use a portable vibrator for vibrating the concrete next to the construction joint when making the joint and also when starting the subsequent placement. The internal vibrators on the slipform paver will not cover this area. Failures on continuously reinforced pavement are usually the result of lack of proper consolidation or improper placement of the reinforcement at the construction joints.

Be sure there are provisions made prior to starting formless paving to take care of any sudden showers that may occur. It is very disheartening to see formless pavement that has been left uncovered and

unprotected during a hard summer shower. The Contractor should have sufficient burlap or other covering material and side forms are on the job to cover such emergencies. This should discuss with the Contractor or paving superintendent in advance.

Curing of concrete pavement is intended primarily to protect the slab against rapid drying and loss of strength and should follow as soon as possible after finishing operation. Liquid membrane or polyethylene sheeting is normally used as curing agents. See the specifications for protective measures to take during cold weather curing. Liquid membrane curing compound can be applied closely behind the finishing, while polyethylene sheeting and other acceptable curing methods must be delayed until the concrete has hardened sufficiently to allow placement without marring the surface. Improper application of liquid membrane curing compound can also mar the surface. The nozzle on the spray machine must be adjusted to produce a fine spray and not an erratic stream or drops, and be operated at a distance from the concrete that will eliminate marking of the surface. Curing compounds require agitation, before and during use, and the compound should be thoroughly mixed before the machine begins application. The exposed sides of the slabs are to receive the same cure as the top and special attention should be given to insure that this is carried out. When polyethylene sheeting is used for curing, be sure that the surface has hardened sufficiently before applying the sheeting so that the surface texture will not be damaged.

It is important that straightedging be started as soon as possible to determine if the pavement surface is out of tolerance and adjustments in the procedures need be made. It is advisable that if polyethylene sheeting is the curing medium, the Contractor be notified far enough in advance of straightedging so that extra men will be available to roll and re-roll the sheeting.

Whatever method of curing is used, the Inspector should insure that it is properly maintained for the specified curing period.

Thin pavement is not desired. It is necessary that the subgrade be checked accurately by the use of a scratch template or stringline and level, if necessary, to insure that the thickness of pavement specified is being constructed. Specifications require a penalty for thin pavement, but with proper inspection, the penalty can be held to a minimum. On continuously reinforced pavement, the percentage of steel in concrete has been accurately determined and it is not desirable to have thin pavement or excessively thick pavement as the percentage of steel is correspondingly increased or decreased depending on the pavement thickness. Proper checking and correction of grade deficiencies in advance of paving will keep the slab thickness and steel percentage within acceptable tolerances of that shown on the plans.

As the pavement placing progresses with the equipment properly set and the mix adjusted to give satisfactory performance, the main duties will be to continually check the reinforcing steel ahead of the slipform paver, the grade and slope of the pavement behind the slipform paver and to see that the curing medium is applied as soon as practicable.

5.1.3 Equipment Requirements

It is the intent of the specifications that an adequate number of bins or compartments be provided to contain each specified aggregate and that a hopper or hoppers be provided to contain the properly weighed aggregate(s) prior to discharge into the mixer. It is also intended that each aggregate component be introduced into the composite by a separate weighing. This, of course, is accomplished in some plants by multiple weigh beams attached to the same weigh hopper or by springless dial indicators with suitable markers on the same dial which may be set to mark the position of the indicator

for the pre-determined loads for the weighing hopper. In other plants, separate beams or dials are attached to individual weigh boxes for weighing and temporary storage of the weighed increment of each separate aggregate.

Either of the above two arrangements are considered to be satisfactory under the specification.

Of course, any approved equipment is only tentatively approved subject to continuous satisfactory actual performance.

Attention is directed to the second paragraph, and particularly, to the first sentence of the third paragraph of Subsection 108.05 of the Standard Specifications. The efficiency of the equipment is measured by actual performance, and in the event excess materials or deficient amounts of materials are weighed into the weigh box(es), satisfactory methods for removal of the excess or adding the deficient amount are to be provided, or the equipment changed or improved as indicated in Subsection 108.05 of the Standard Specifications.

5.2 MAINTAINED CONCRETE PAVEMENTS

Unlike normal concrete pavement, the MDOT inspector has limited responsibilities when the contract requires maintained concrete pavement. The inspector will report the Contractor's daily activities for the daily diary, monitor the Contractor's traffic control plan, closely monitor the operations of the profilograph and perform other duties as directed by the Engineer.

The Contractor's responsibilities are defined in the special provisions for Maintained Concrete Pavement in the contract proposal.

5.3 BRIDGE END PAVEMENT

This item is a more heavily reinforced slab constructed at the ends of bridges when shown on the plans. All requirements of Section 501 of the Standard Specifications for cement concrete pavement apply to bridge end pavement, except where otherwise set out in Subsection 502.03.2 of the Standard Specifications, special provisions, or on the plans.

Screeding and finishing are normally by hand methods and the inspector should ascertain that the screed is in good condition and in the correct alignment. In the event the concrete pavement is not in place adjacent to site of the bridge end slab, the bridge end pavement is to be screened from a correctly set temporary header. This header must be constructed of heavy material of sufficient strength and so anchored as to withstand the screeding action. The grade stakes for setting the header should be very carefully and accurately set, and should be checked immediately before their use in setting the header.

Screeding is to be longitudinal, with the header, or pavement in place, and the finished bridge end as gauges.

5.4 PRESSURE GROUTING CONCRETE PAVEMENTS

Widening and overlaying existing concrete pavements with bituminous surfacing are expensive operations.

Overlaying on existing concrete pavement will within itself provide some protection to the underlying concrete pavement, and the base upon which it is placed, from the infiltration of surface water. However, individual slabs which are "pumping" before overlay will probably continue to pump under

heavy loads after overlaying, unless they have been stabilized at least to the extent that the voids underneath the slabs are substantially filled. Of course, when the slabs continue to pump the purpose of the overlay is soon defeated.

Although it is desirable that water-obstructing shoulder material be removed and replaced with pervious materials, experience has shown that a reasonably satisfactory overlay of concrete pavement can be achieved in most cases, provided pumping is stopped and voids are filled with materials resistant to erosion or other detrimental action by water.

Experience has shown that such stabilization can be attained by the proper use of pressure grouting with a cement-soil mixture.

Varied experiences have evolved from variations in application of pressure grouting and allied work. Results obtained on successful pressure grouting jobs appear to follow a pattern of effort on the part of field personnel and the Contractor to be liberal with the application of minimum standard basic principles for pressure grouting work.

It is known that considerable effort, time, and money has been expended in the past, with some ungratifying results to "mudjack" distorted and pumping concrete pavements into a desirable traffic facility. Most of these attempts were made to correct a problem entirely different from that now involved in the construction of widening and overlay projects. Most "mudjacking" was done under traffic with traffic continuing to use the jacked sections immediately behind the pumping operations. More depth of grout was usually employed under the slab because of "raising" the deformed slabs to some desirable grade, insufficient time was allowed, in most cases, for the grout to set and the resulting "mudjacked" slabs were not provided the additional stabilizing and waterproofing effect of a dense graded hot mix pavement overlay.

The major difference between "mudjacking" and pressure grouting, however, is that in pressure grouting no attempt is made to "raise" a slab, but merely to stabilize the slab in its present vertical position. Pressure grouting acts as a foundation for a new pavement. To raise a slab involves an entirely different set of complications and techniques not involved in pressure grouting. The leveling of grout stabilized slabs is, of course, accomplished with hot mix asphalt pavement.

Sufficient experience has been obtained and observed for the Department to adopt the policies and procedures, as set out herein, for minimum basic requirements for stabilizing existing concrete pavements.

<u>**Pretesting**</u>. All existing concrete pavements, with or without a previous overlay, which are moving, are to be tested under favorable testing conditions to determine and identify slabs which are moving, or to document from such testing that no slabs are moving under prescribed conditions and loads.

Prior to Plan Preparation. There are at least two successful ways to make these preliminary tests.

1. During or after a rainy and preferably cool period, knowledgeable personnel should walk the project slowly and in its entirety, and locate slabs and joints that are obviously moving under heavy loading conditions. These are usually easily located by observing mud or water that is being or has been pumped from beneath the slabs and from observed movement of the slabs under heavy loads.

Each slab or major section of slab so detected should be marked and its location recorded in a log. During this walking survey of slabs, also locate and determine the area of any slabs that are too badly broken to be stabilized. This information should also be logged in a field book. Keep in mind that a slab, which is not broken into small pieces, can be stabilized and will provide a more desirable base after stabilization than an intermittent short section of deep flexible base, and at much less cost.

2. In the event the erratic scheduling of projects to be overlaid prevents the determination of moving slabs as indicated in the preceding Paragraph No. 1, predetermination can be made in a very short time by the use of properly loaded equipment, traveling at or near walking speeds, with proper observations and recordings made. The District Maintenance Engineer may be able to furnish a loaded single axle truck and driver to assist the Project personnel, a considerable savings can be accomplished by eliminating the pre-rolling item from the contract. This type to investigation should be made preferably following a rain(s), and in any case, in the early morning hours before the air temperature has reached 80° F., or late in the afternoon after the air temperature has gone below about 65° F. It has been observed that under higher temperature conditions, the expansion of the slabs have resulted in some mechanical locking at the longitudinal and transverse joints and cracks, and that a false assumption will result under such conditions.

The equipment to be used in this predetermination shall be, as a minimum, a truck having a single rear axle, with the rear axle loaded to the maximum, legal load for a tandem axle for the road being tested.

The above indicated load is to be considered minimum. Heavier loads will make it easier to determine moving slabs, and should be permitted, or required, if less than favorable conditions exist for testing slab movement. However, extreme care and good judgment must be exercised in the selection of the proper load to be applied in order to assure effective determination of unstable slabs, but without inflicting damage to stable portions of the pavement structure. Under conditions of high water table or after prolonged periods of wet weather which would indicate saturated conditions of subgrade soils, or other similar conditions, any increase in the load over the minimum indicated above should be dependent upon the severity of such conditions. In no case should the single axle be loaded in excess of 25 tons.

Under either of the two procedures indicated above, slabs should be identified in the field as they are checked, in such a manner that they may later be located from a log made. It is impossible to know exactly where holes should be drilled in order to stabilize a slab, but the hole location pattern developed as a typical minimum requirement for Pressure Grouting has been proven by research to produce good results; therefore, this method for marking these slabs with sufficient permanency is coding each one with spray paint, or different colors of spray paint, so as to record in the log the location and condition of the slabs. For example, the slab and the log should identify where pumping is occurring, that is, at the edge, at the lead end of the slab with respect to the direction of traffic, or at both ends of the slab, or combinations thereof. Also include in the identification and the log, any slabs which obviously are broken into pieces to the extent that the slab cannot be stabilized; such information is necessary in order to provide a reasonably accurate quantity of removal and replacement. In this connection, it has been stated that the capabilities of Pressure Grouting has reached a point such that almost any slab broken into too many small pieces would become excessive, and results might be somewhat doubtful. Also, in this connection, it has been observed that the removal of slabs and the replacement of these individual slabs with flexible materials have not consistently resulted in satisfactory riding qualities,

presumably because of the intermittent stability and consolidation differential between rigid materials and flexible materials and their effect on underlying flexible materials.

A complete log of the moving and seriously broken slabs is to be made as the testing progresses, with each condition coded or otherwise identified, such that the completed log fully represents the results of the testing. A copy of the log is to be furnished to the Roadway Design Division prior to plan preparation.

Pressure Grouting is Specialized Work. It is essential that bidders be provided with a reasonably accurate estimate of quantities involved in order that the bidder may know, when bidding, how to distribute costs for this specialized work. Otherwise, the bidder must inflate prices in order to take the gamble.

The Roadway Design Division will use the log of pumping and broken slabs to determine estimated quantities of slab removal, if any, and will apply the standard minimum basic hole spacing requirements in determining the number of holes and estimating quantities for other allied pay items. The Area Engineer of the Construction Division and the representative of the Roadway Design Division will use the log for field and plan review purposes.

<u>Pre-Rolling Under the Contract.</u> Occasionally, the contract will contain an item for pre-rolling. In most cases the item of pre-rolling will not be included in the contract when an adequate test rolling procedure has been accomplished prior to pressure grouting. Where the item of pre-rolling is included in the contract or where the contract requires that the Contractor pre-roll as a part of another item, or where the Contractor elects to and is permitted to pre-roll for personal information, proceed as follows:

Using the Contractor's equipment, as specified in the contract or as indicated hereinabove, locate any moving slabs that might have been missed during the original testing. The equipment used should be loaded in accordance with the governing specifications and operated at walking speeds. Competent inspectors paying close attention to the operation should detect, mark, and make a log, similar to that indicated above, of any moving slabs or other changed conditions that had not been previously determined. Determinations during this pre-rolling should be made similar to those indicated herein for earlier determinations and should supplement such earlier determinations.

Once a slab is detected as moving, it should never be considered at some subsequent date as not moving, and should be pressure grouted. As indicated earlier, it is desirable that testing of the road for moving slabs should be made during the most adverse wet and cool periods. During such period, a slab may be detected as moving, but under drier and warmer conditions, the slab may not be moving. There is no reasonable way in which the conditions causing the movement during cool, wet weather could permanently correct themselves and, therefore, the slab would pump again under similar or worse conditions.

All pre-rolling should be performed on the entire project before Pressure Grouting operations are begun.

In the event pre-rolling, performed under the contract, indicates any change in quantities of Pressure Grouting or slab removal of more than 25% from that shown in the contract, the Assistant District Engineer - Construction is to be notified immediately and approval obtained prior to proceeding with the Pressure Grouting or slab removal, as the case may be.

Pressure Grouting. Before commencement of grouting operations, the inspector should thoroughly check the Contractor's equipment for compliance with the specifications and as to its apparent working order. All materials used in the grout mixture should be checked by the inspector to verify that they are in compliance with the specifications. The Contractor should be informed as to the exact proportions of materials to be used in the grout mixture. Before mixing operations start, the sand box or hopper mounted above the conveyor belt will need to be calibrated in order to measure the exact sand-cement ratio in the mixture. This can easily be done by using the one (1) cubic foot box provided by the Contractor for this purpose.

An inspector should be stationed in such a location that the Inspector can see the exact proportions of materials being mixed as specified in the contract or as directed by the Engineer. After adequate holes have been drilled to insure an uninterrupted pumping operation and the Contractor is ready otherwise, an initial batch should be mixed and the consistency of the grout checked as outlined below.

Remember that the calcium chloride is to be in solution with the mixing water before incorporation with the cement and sand.

The specifications require that the Contractor furnish a grout flowcone and stopwatch for the Engineer's use in determining consistency of the mix. It is the Contractor's responsibility to maintain the consistency of the grout mixture in accordance with the specified time of efflux (in seconds) for a material. A flowcone check should be made by the inspector after the Contractor has satisfactorily mixed the initial batch and as many times as is necessary during batching and pumping operations. It is very important that the consistency of the mixture be controlled as indicated by flowcone measurements. Research and tests reveal that variable amounts of water in the mixture have more effect on the shrinkage, time of initial and final set, strength, etc. than any other factor. The grout mixture can be too stiff and cause "stooling", but the probability of "stooling" has been overemphasized in the past.

During the grouting of a hole, the pumping of grout should continue until the grout extrudes from a joint, crack, adjacent hole, side of the slab, shoulder or slope, or until the slab starts to rise. In watching for the extrusion of grout, be sure that any water that was beneath the slab has been pushed out ahead of the grout mixture. In other words, continue pumping until any liquid or semi-liquid that has been expelled from beneath the slab has approximately the same consistency as the grout mixture. Holes should be plugged immediately after the removal of the discharge hose so that back pressure will not force the grout through the hole. Grout wasted by the Contractor caused by leaking equipment, plugged lines and hoses, careless operation, grout left in mixing tank, etc. will not be included for payment.

After grouting all holes in a slab, traffic should continue to be detoured around the slab and the Contractor's equipment kept off the slab for the minimum period indicated in the contract, or in the event no minimum period is indicated in the contract, for as long as is considered to be reasonable, but in no case less than three (3) hours to allow the grout mixture to set and harden sufficiently to prevent displacement.

After the time period indicated in the contract, proof-rolling and re-grouting should be carried out as necessary and in accordance with the terms of the contract. Research and tests have shown that less re-grouting will be required if the proper consistency is maintained in the grout mix.

For record purposes, slabs should be drawn at a convenient scale in a bound field book and location of holes shown accordingly. Number of holes, dates, and inspector's initials shown on each page. For information purposes, a different symbol for holes for each grouting should be used, such as:

- X First grouting
- O Second grouting
- \$ Third Grouting
- ¢ Fourth Grouting
- T Fifth grouting

<u>NOTES</u>

- 1. Every reasonable safety precaution should be taken during test rolling and pressure grouting. Elements of equipment operating under pressure should be in such condition and so used as to eliminate the probability of blow-outs. Tires, wheels, rims, etc. on loaded rolling as to withstand the imposed loads without the danger of failure.
- 2. Plugs driven into the top of a grouted hole to prevent the escape of grout should remain in place as long as necessary to prevent such escape. However, any portion of a plug protruding above the surface of the pavement must be removed or the plugs removed before traffic is allowed on the grouted slab.

CHAPTER 6 - INCIDENTAL CONSTRUCTION

6.1 GENERAL

Incidental Construction, Division 600 in the Standard Specifications, includes a wide variety of items that are used on Department construction projects. Many of these items are broad in scope and are commonly used on most types of projects. Many other items are specialized and are used on specific types of projects. Requirements for incidental construction items are well described in the Standard Specifications. This chapter supplements the Standard Specifications by providing discussion of some of the broader construction practices.

6.2 STRUCTURAL CONCRETE

Structural concrete will typically be governed by Section 804 of the Standard Specifications. The Contractor will submit a concrete mix design to the Central Laboratory thru E-Forms for the class(es) of concrete specified in the contract. Once approved subject to field verification the Project Engineer and District materials Engineer will receive notification from the State Materials Engineer. Concrete is accepted upon proper certification of concrete production through an approved quality control program and verification by job site acceptance criteria. The Contractor is required to develop and implement a quality control program to maintain the required properties of concrete. For projects with 1000 cubic yards and more, quality control and acceptance shall be achieved through statistical evaluation of test results. For projects of more than 200 but less than 1000 cubic yards, quality control and acceptance shall be achieved by individual test results. For projects, less than or equal to 200 cubic yards, refer to the requirements of TMD-20-05-00-000 "Sampling and Testing of Small Quantities of Miscellaneous Materials" for mixture design and testing requirements.

6.2.1 Batching, Mixing, Transporting, Placing and Finishing Concrete

See the Material Division Inspection, Testing, and Certification Manual for more information.

- A. <u>Batching</u>. The concrete plant is required to complete the NRMCA Batch Plant QC-3 Checklist (*Concrete Field Manual*, Section 8.2.2). The District Materials Engineer will complete Form TMD-324 (which is a form for recording location information and NRMCA checklist complete date information) and send this to the Materials division (*Concrete Field Manual*, Section 8.2.8) for including the concrete plant in the list of approved plants in SiteManager. Scales, water meter and admixture dispenser for ready mix plants are required to be checked and certified per Section 804.02.11 of the Standard Specifications. The calibration procedure will be documented on Form TMD-324.
- B. Mixing.

1. <u>Mixing at Site</u>. Before concreting operations are begun, check the mixer drum for leaks, excessively worn blades, presence of hardened concrete, and the condition of the discharge chute. Insist that all defects be corrected satisfactorily before permitting use of equipment. Check the speed of the drum to determine that it is within the limits of the manufacturer. The mixer should be provided with a name plate by the manufacturer stating the capacity of the mixer. No charge should exceed this stated capacity.

The condition of the skip should permit complete discharging without loss, and it should be kept raised long enough to discharge all material into the drum.

If the mixer is to be idle for more than (1) hour, it should be thoroughly cleaned.

2. <u>Truck Mixing</u>. If a commercial plant is being used, check the Materials Division Website to confirm that it has been inspected and is currently approved for use. The approval process includes checking following items and documenting them on Form TMD-324:

- a. The truck should have a legible plate supplied by the manufacturer showing the capacity of the mixer drum.
- b. The calibration of the water-discharge mechanism should be plainly marked.
- c. Water valves will be checked for leaks.
- d. The mixer drum will be checked for leaks, excessively worn blades, and clogging with hardened concrete.
- e. The water tank will be checked for leaks.
- f. The revolution counters will be checked to insure they are working properly. The specifications require that each batch be mixed for at least seventy (70) and not more than one-hundred (100) revolutions at mixing speed.
- g. The ticket provided by the producer will record the reading of the revolution counter at the beginning, and end of the mixing cycle if the cycle is completed before leaving the plant. It will also show if additional water and how much is to be added at the delivery site. If the batch is mixed in transit, the reading at the end of the mix cycle is to be noted by the placement inspector.

If any of these items are not functioning properly notify the Contractor's Superintendent and the District Materials Engineer.

C. <u>Forms</u>. Before placing any concrete, the forms must be completely checked for conformance with the plans and specifications, and all irregularities corrected. They should be checked for ease of removal without injury to the concrete.

Any element of the forms, such as chamfer strips or other light decorative forming, likely to warp or distort from moisture absorbed from the concrete should be waterproofed with shellac, or equivalent, or thoroughly soaked with water immediately prior to placing of concrete.

All sawdust, dirt, and other foreign material, including ponded water, must be removed from within the forms before placing any concrete in the forms. If the forms are too deep to permit easy removal at the top, an opening should be left at the bottom through which this material can be removed. This opening must be closed and made mortar tight after the forms have been cleaned.

If forms are to be oiled, they should be oiled before placing of reinforcing steel to avoid splattering of oil on steel.

D. <u>Handling and Placing Concrete</u>. First check that the mixture is within the specified slump range.

During the placing of the concrete, watch the consistency of the concrete and the methods of spreading and working. See that segregation is avoided, that the finished product is well consolidated, and that the monolithic mass is free from surface cavities resulting from the trapping of air and water along the forms. Careful spading of the concrete along vertical forms will usually release the air and water bubbles. "Sand streaking" must also be avoided. This is usually the result of leaky forms permitting the escape of cement paste. Forms should be watched closely and any leak discovered must be caulked immediately.

Concrete should not be dumped indiscriminately through the reinforcement; nor should it be deposited continuously at one point and forced to flow for considerable distances. Start at one point and work from that point by dumping the succeeding batches in such a way that the concrete will flow along and under the reinforcement and will be vibrated into the preceding batch.

Concrete must be vibrated and spaded immediately upon dumping. The vibrator should be applied to the concrete systematically at short intervals so that the vibrated areas of concrete overlap. The vibrator should be inserted to the full depth of the concrete being placed and into any previously placed concrete which has not taken its initial set.

E. <u>Removal of Forms</u>. The specifications state the minimum time the forms must remain in place for different types of structures if test cylinders are not used as a guide.

Keep an accurate day by day record of weather conditions including high and low temperatures as a guide in determining when the falsework maybe safely struck if test cylinders are not used as a control. When test cylinders are used to determine the time to remove the forms, they should be made and cured in the same manner as job control cylinders.

Any honeycomb or damaged areas noted upon removal of the forms should be repaired by removing all improperly bonded aggregate and filling the cavity with grout made from the same cement used in the mix.

F. <u>Curing of Concrete</u>. The proper curing of concrete requires the proper control of three major factors: Humidity, temperature, and protection against disturbance. The concrete should be kept under conditions of humidity and temperature that will produce a uniform hydration of the cement at the fastest economical and practical rate. The specifications require that, unless high-early strength cement is used, all concrete shall be kept continuously moist for a minimum period of seven days. Frequent inspections of curing concrete should be made to see that it is kept moist.

Temperature control is rarely used until the ambient temperature is below, or is expected to drop below, 40°F.

For temperature below 40°F, protection and/or artificial heat must be provided. If salamanders or other producers of dry heat are used, the surface of the concrete must be kept continuously moist. If steam is used, it must be supersaturated. It is very important that the rate of temperature change and the maximum temperature be kept within the specification limits.

While the concrete is curing, it must be subject to no disturbances or loads. Concrete that is disturbed or loaded while partially hydrated may be irreparably damaged.

- G. <u>Finishing Concrete Surfaces</u>. The various classes of surface finishes are described in detail in the specifications. The following items in the specifications will need special attention:
 - 1. Surfaces to be patched must be kept saturated with water for at least three (3) hours immediately before patching.
 - 2. For concrete surfaces requiring a rubbed finish, rubbing is to begin as soon as the forms can be safely removed without danger of injuring the concrete. The surfaces should be thoroughly saturated with water for at least three hours immediately before rubbing begins, and kept saturated during rubbing operations.

6.2.2 Check List

A suggested check list for inspectors of concrete box culverts and minor structures is as follows:

- A. <u>Storage of Materials</u>. Steel and cement must be properly stored and protected from the weather.
- B. Location of Structure.
 - 1. Check on location as to stationing, barrel length compared to roadway cross section, skew and flow lines.
 - 2. Check survey stakes for proper information.
 - 3. Check invert elevations in relation to stream bed.
- C. Excavation and Foundation Exploration.
 - 1. Record the data necessary to compute excavation quantities.
 - 2. Foundation material should be uniform for the entire length of the structure. Where unsuitable materials are encountered special treatment may be needed. In these instances, notify the Project Engineer.
 - 3. Provide for bypass of drainage.
- D. Forming.
 - 1. Form dimensions must be checked.
 - 2. Forms must be well built, with tight joints and smooth surfaces.
 - 3. Forms must be oiled or wetted before use.

E. Mixing and Placing Concrete.

- 1. Concrete must be accurately batched and delivered in accordance with the applicable Specifications
- 2. Required finishing tools must be on hand.
- 3. Reinforcing steel must be tied and secured in proper position before concrete placement.
- 4. Be sure all spacers are removed as placement progresses.

- 5. Finish concrete to neatlines.
- 6. Provide the proper curing environment for the fresh concrete.
- 7. Make the necessary additional test cylinders if the Contractor plans to remove forms or backfill the culvert before the prescribed time has elapsed.
- 8. If curing compound is used, be sure it is thoroughly mixed and properly applied.
- 9. Make job control test cylinders according to Materials Division schedule.
- F. Removal of Forms
 - 1. Require tie-bar holes and honeycomb to be patched as soon as possible after form removal.
 - 2. Enforce Specifications in regard to time or compressive strengths for form removal.
- G. Reports
 - 1. Keep in a bound field notebook an accurate record of dates and concrete placed.
 - 2. Keep record of key dimension checks made.
 - 3. Input information into SiteManager. See the Concrete Field Manual for more information.

6.3 BEDDING FOR PIPE

Strict enforcement of all specification requirements of the installation of drainage conduits is to be maintained to provide dependable and serviceable drainage structures. Each stated requirement is important. Failure to comply with one, or more, of these requirements may cause failure in the structure, or decrease the efficiency of the installation.

Particular attention is to be given to providing a stable foundation for the structure, and it shall be the responsibility of the Project Engineer to insure that the Contractor provides bedding for pipe in accordance with the requirements and provisions of Subsections 603.03 of the Standard Specifications, and Standard Drawing for the type bedding specified.

6.4 RIGHT OF WAY MONUMENTATION AND DOCUMENTATION

Right-of-way markers and permanent easement markers shall be provided and placed in accordance with the plans and specifications and at points designated on the plans, or as directed by the Engineer with assistance as needed by the District Surveyor. The work also shall include the removal of right-of-way markers from their original locations and resetting at new locations as specified or established.

Generally, Type "A" markers shall be placed in the ground and Type "B" markers shall be placed in concrete areas. The estimated quantity of markers will be shown on the plans, and it is the Contractor's responsibility to verify the type and number of markers required.

The Contractor is required to retain the services of a Licensed Professional Surveyor for the layout and placement of right-of-way markers. The Licensed Professional Surveyor tasked with responsible charge for this installation shall submit a written certification to the Engineer certifying that all right-of-way markers were set at the locations designated on the plans, or otherwise directed by the Department, and to the specified tolerances. The certification shall also include a copy of the right-of-way plan sheets with the right-of-way marker / permanent easement table(s) completed for all locations

in which the Licensed Professional Surveyor installed right-of-way markers and permanent easement markers. The table shall be completed showing the as-built (in-place) northing and easting location based on the State Plane Coordinate System. Each right-of-way plan sheet shall be signed and stamped by the Licensed Professional Surveyor.

The Licensed Professional Surveyor tasked with responsible charge will furnish a signed and stamped Final Right-of-Way Plat meeting the minimum standards of surveying for a Class A, B, or C survey as required by the Mississippi State Board of Licensure for Professional Engineers and Surveyors. In no incidence shall the standards for surveying be less accurate than a Class C survey.

The Final Right-of-Way Plat shall show all horizontal control points, whether provided by the Department or by the Contractor. In addition, the as-built project alignment shall be shown with stationing, curve data, and State Plane Coordinates for the BOP, PC's, PT's, and EOP.

The Project Engineer should retain payment on 50% of the quantity of Right-of-Way markers placed until the submission of the Final Right-of-Way Plat and verification from the District Surveyor that all requirements have been met.

6.5 MAINTENANCE OF TRAFFIC

Prior to the start of any construction, all signs, barricades, etc. shown on the DETAILS OF CONSTRUCTION SIGNING in the plans should be in place. It should be remembered that the DETAIL OF CONSTRUCTION SIGNING shows only the <u>minimum</u> requirements and in no way relieves the Contractors of their responsibility for all signing and their duty to see that signs or devices are erected and maintained as are deemed necessary to safeguard the traveling public.

Before starting an operation that will change the flow of traffic or require different traffic control, the superintendent should discuss the proposed maintenance and construction signing with the Project Engineer. The specifications and the <u>Manual on Uniform Traffic Control Devices for Streets and Highways</u> cover the requirements and should be frequently consulted.

It is the Project Engineer's responsibility to insure that the Contractor maintains and properly protects all construction signs necessary to properly warn and safeguard the traveling public. The signs on the project should be frequently checked and the Contractor required to re-adjust or replace any signs which have been knocked down or damaged.

The safety and convenience of residents along the project must be provided for by the Contractor. He should make proper and timely notification to local residents before making interruptions of their access. This works to everyone's advantage as residents are most cooperative when they are notified and understand what is to happen. Often the Contractor learns of some important considerations such as sickness, funerals or some scheduled delivery so that the interruption to access can be timed for the least interference.

When Maintenance of Traffic requires the construction of detours, run-arounds, etc., the plans and special provisions should be checked very closely to determine which, if any, items are to be paid for as direct bid items and which are to be included in this lump sum price bid for Maintenance of Traffic.

The percentage of the contract lump sum price bid for Maintenance of Traffic to be allowed on the monthly estimate will be determined by the percentage of the combined total monetary value of all other bid items allowed on the same monthly estimate.

6.5.1 Traffic Control Plan Report - Form CSD-761

Form <u>CSD-761</u> is to be completed by the Responsible Person assigned to monitor and administer the Traffic Control Plan for a project. The report is to be made on a frequency of at least once a week. If discrepancies are noted, the Contractor's superintendent is to be immediately notified, and the report is to continue on a daily frequency until all discrepancies are corrected. Form <u>CSD-761</u> is in the <u>Forms</u> <u>Section</u> of this Manual.

CHAPTER 7 - MATERIALS AND TESTING

7.1 GENERAL

Materials inspecting, sampling, and testing is an important part of the inspector's daily responsibilities. Materials that are incorporated into the work will be inspected, sampled, and tested in accordance with the Standard Specifications, Plans, the Materials Division Inspection, Testing, and Certification Manual, the Field Manual for Asphalt Mixtures, Concrete Field Manual, and the Inspector's Handbook. Persons involved with materials and testing should review the above documents as to the importance of compliance with sampling and testing frequencies and receipt of material certification reports, including coverage prior to payment.

The inspector should be familiar with specifications, manuals, and handbooks referenced above.

7.2 RANDOM SAMPLING

As stipulated in Subsection 700.04 of the Standard Specifications, samples in each lot to be evaluated for acceptance under the statistically based acceptance plan are to be taken by a pre-determined random sampling pattern.

The random sampling table shown in the Tables and Charts Section of this Manual consists of two hundred and eighty (280) pairs of random numbers which shall be used in determining location of samples. Each number is to be considered as a decimal fraction of 1,000. For any lot consisting of an area of work, the random numbers are to be taken from the table in pairs.

The two numbers of each pair are to be used to determine coordinates of the sample within the area, measured from a reference point located at one corner of the area. The first, or left, number is to be used as the fraction of the length and the second number is to be used as the fraction of the width.

For example, a section of a course twenty-eight (28) feet wide and nine hundred, seventy-five (975) feet long, extending from Station 450+00 to Station 459+75 is to be tested by the random sampling method. A pair of random decimal numbers is selected without bias from any block, such as the third pair in the block at the intersection of column 2 and brace 5. By multiplying by the decimal fractions as indicated above, the coordinates, in feet, of the sample location would be 308 for length, and 7 for width. Assuming the construction to be progressing from the beginning of project toward the end of project, the sampling location would then be Station 453+08, 7 feet from the left edge.

The sampling points should always be located from the left edge of construction regardless of the direction of construction with reference to station numbers. For the purpose of practicality, all computations involving relatively large areas should be rounded off to the nearest foot.

It is understood that the location of the test may be moved for good cause within the square yard; the center of which is the coordinate location, such as in the case of edges, boundary line, joints and surface texture affecting testing equipment seating, etc. In the event it is necessary to move the location of the test site outside of the square yard indicated above, the reason for such location should be documented.

The set of random numbers may also be used for lineal random sampling such as in distance, time, number of trucks, etc., where width or depth is not involved. In such case, merely use the first decimal fraction of the pair and disregard the second decimal fraction. Likewise, the set of random numbers

may be used for random sampling in three (3) dimensions merely by using the first decimal fraction for the first dimension, the second decimal fraction for the second dimension and the first decimal fraction of the next pair for the third dimension.

CHAPTER 8 - BRIDGES AND STRUCTURES

8.1 GENERAL

The construction of bridges and structures is more specialized than most other phases of highway construction. Construction operations and inspection are more complicated because of the work and because of the means by which the work must be accomplished. A bridge site is seldom a convenient place to build anything, let alone a structure requiring a fair degree of precision in its location. Many bridge construction operations depend heavily upon the skills of individual workmen for their successful accomplishment. When assigned a project that includes bridges or other structures, the Project Engineer and Inspector should at the first opportunity, make a thorough study of the Plans, Special Provisions, Supplemental Specifications, and the Sections of the Standard Specifications relating to the work under the contract. Review the Plans for possible errors in quantities and elevations. Check for conformance between dimensions given and elevations shown. Inspect the structure site and determine if conditions are as depicted on the Plans or whether some changes may have taken place since the original survey was made. This investigation may indicate that the structure should be shifted slightly from the exact stationing shown on the Plans to better fit existing conditions. There may be no latitude for a shift in position such as in the case of a grade separation structure, but there is sometimes considerable opportunity to shift drainage structures.

Location. The Engineer should see that the structures are located in such a position as to provide for the most efficient drainage. In some cases, it may be advisable to change the location of culverts if a careful survey of the drainage system indicates that this should be done. The life of a road depends to a large extent upon proper drainage, and care should be taken to see that the drainage system is properly designed and constructed in every detail.

If the culvert, as indicated in the Plans, appears to be improperly located, inadequate or excessive in size, or if it is definitely not adapted to the location specified, the proper change should be initiated by the Project Engineer through the District.

<u>Staking.</u> When bridge staking is performed by MDOT, the Project Engineer or Inspector should review the staking with the Contractor and make sure that the Contractor understands the meaning and significance of all stakes before work begins. The responsibility for the preservation of stakes is the Contractor's and the Contractor should be advised accordingly.

When the contract provides a pay item for staking by the Contractor, MDOT will furnish bench marks and baseline reference points as per Section 699 of the Standard Specifications. Even though the Engineer is required by the Specifications to furnish the Contractor with only centerline and benchmarks, the Bridge Inspector should cooperate with the Contractor in establishing lines and elevations necessary for the proper prosecution of the work, but it should be clearly understood that in so doing the bridge inspector is not relieving the Contractor of any responsibility for such lines and grades.

Inspection. The Project Engineer is to see that the construction work on each structure or portion of the structure is thoroughly inspected. The Inspector should check all the forms for line, elevation, plumbness, spacing, quality, bracing, strength, etc., before any concrete is ordered, mixed, or placed. Prior to their incorporation into the work, all materials should be inspected at their point of storage or manufacture. Usually test reports or certifications are received in the Project Engineer's Office before

the materials arrive on the job site. In this instance, it is necessary to check the material markings, such as lot number or tag number, against the test report and also to visually inspect the material to insure against damage or deterioration between time of test and time of use.

Occasionally, materials arrive on the job site prior to testing. In this instance, samples should be taken and forwarded to the laboratory for testing. The procedures for this sampling are covered in other sections of this Manual and the Specifications.

No material is to be incorporated in the work unless it has been tested and accepted by the laboratory and visually approved on the job by the Engineer. Although an Inspector may be given specific authorization to inspect certain work and enforce the requirements of the Plans and Specifications, the limitation of the Inspector's authority must be known. The problem usually arises as to when an Inspector can and cannot make the decisions that are required to be made. The case may occur where work is in progress and a questionable application of a specification requirement arises. If an immediate decision is required, the Inspector should render such a decision if the Inspector judges the intent of the specification requirement to clearly warrant a reasonable interpretation. The decision should then be confirmed by the Project Engineer at the earliest opportunity. The Inspector should, however, initially take such matters to the Project Engineer for interpretation if time permits.

The Inspectors should have a thorough understanding of accepted procedures for keeping field notebooks, diaries, records, and reports to assure proper documentation. The Inspectors will probably be required to make out all of these reports as they may be the only person to observe a particular phase of construction and thereby be the only ones qualified to give an accurate account of the information that is required for the records. Each Inspector is to keep an Inspector's Daily Report, listing unusual occurrence and all construction work accomplished by the Contractor in order that all significant items will be included in the project diary.

<u>Safety.</u> The Inspector should keep well informed as to the safety practices that are required during any construction work. The Inspector should always be alert to any possible personal danger, as well as danger to the Contractor's forces and the public. Following is a partial list of items that the Inspector should be familiar with to insure the safe completion of any construction project:

- 1. Be familiar with the Plans as to the location of underground facilities such as water lines, gas lines, communication lines, etc., so that construction can proceed without danger of damaging these facilities.
- 2. Be familiar with safety practices while working around the various kinds of construction equipment to include an observation of overhead clearances to prevent damage to power lines, telephone lines, etc.
- 3. Be familiar with the safety precautions involved in the various construction methods and practices, such as cofferdam construction, movement and storage of material, steel erection, concreting operations, demolition and dismantling of structures, etc.
- 4. Observe that adequate warning signs and barricades are used.

- 5. Be familiar with the proper requirements to insure the safety of the structure, such as not overloading concrete that has not reached its desired strength.
- 6. Remember to wear a hard hat, safety vest and other safety equipment, as required.
- 7. The inspector should be familiar with the Prime or Subcontractor's Safety Officer(s).

8.2 FOUNDATION EXCAVATION

Before the foundation excavation is begun, adequate elevations or cross-sections of the site must be obtained, from which the quantity of excavation can be accurately determined.

Normally the excavation is carried to the elevation shown on the plans, but if any doubt exists as to the stability of a foundation when this elevation is reached, the Project Engineer should be contacted at once for consultation and instructions. The Specifications provide for extra depth excavation if this action is considered necessary.

Ground water is often encountered above the desired foundation elevation. This water must be prevented from saturating the foundation soils. One way of preventing saturation is by constructing sumps in the excavation. These serve as receptacles for excess water and expedite pumping operations. All sumps should be located outside the footing forms and other precautions taken to insure that water flow will not wash the cement from freshly placed concrete (See Subsection 801.03.6 of the Standard Specifications).

Cofferdam. A Cofferdam is a structure, usually of a temporary nature, constructed for the purpose of keeping water and earth out of the excavation area. Normally a cofferdam is placed before excavation begins. A simple type of cofferdam is a box-like enclosure of sheet piling within which the excavation is made, pumped dry, and the foundation constructed.

If the excavation within a cofferdam is to be of sufficient depth to create the possibility of a hazard or if any condition exists which might contribute to a dangerous situation, the Contractor should be requested to submit, for approval, drawings showing the proposed method of cofferdam construction. Drawings must be signed by a Registered Professional Engineer with appropriate expertise. This is required of the Contractor by the specifications, when so requested by the Engineer. Submission of the drawings and approval by the Engineer does not relieve the Contractor of any responsibility under the contract and this should be understood.

Cofferdams must be of sufficient size to accommodate the necessary form work, drainage details such as sumps, clearance for battered piles and clearance for minor deviations that occur in the installation of the walls.

<u>Shoring</u>. Shoring refers to temporary support of the side of an excavation. It is a wall type structure constructed of wood and/or steel and is installed as the excavation proceeds. Although the Contractor is responsible for the adequacy of shoring used, any seemingly unsafe condition should be brought to the attention of the Project Engineer. On some projects when the shoring is complicated and detailed, the plans may require the shoring to be designed and signed by a Registered Professional Engineer with appropriate expertise.

<u>Removal Of Bottom Heave.</u> Generally, the excavation will be completed to the bottom of the foundation prior to driving of any permanent piles. Any heaving of the bottom caused by pile driving is to be removed upon completion of driving and the bottom finished for the placement of concrete thereon. There should not be any additional payment for removal of bottom heave.

<u>Measurement And Payment.</u> Measurement of and payment for Foundation Excavation is to be in accordance with the provisions of Subsections 801.04 and 801.05 of the Standard Specifications.

In the sketches and computations submitted for checking for final payment, show only that portion of Foundation Excavation within the "pay lines." Usually, these lines will be 18 inches (typical) outside the neat lines of the footing. Original ground elevation and/or graded elevations at specific locations and the elevations of notable irregularities should be recorded in the sketches.

The actual elevation of the bottom of the footing should be recorded along with the vertical dimensions used and the calculations necessary to compute Foundation Excavation.

Any abnormal conditions encountered during excavation should be noted in detail in the diary.

8.3 PILING BEARING VALUE

Pile bearing is usually determined using either the drop hammer method, Pile Driving Analyzer (PDA) Monitoring or by static load tests.

Drop Hammer Method. When this method is used, the pilings are driven in the ground with a steam, air ,diesel or hydraulic hammer. Marks are made on the piling in one-foot increments. The number of blows it takes to drive the piling is counted. This information along with other information about the hammer is entered into pile hammer formulas in Subsection 803.03.1.9.2 of the Standard Specifications and the bearing of the pile is determined.

PDA Monitoring. When this method is used, the Department will install special instrumentation on the pile and the information will be recorded as the piling is driven into the ground. The analysis of the monitoring will be the responsibility of the Department. The Contractor shall give notice to the State Geotechnical Engineer at least 14 calendar days before the scheduled date of driving piles to be monitored. The Contractor shall confirm the driving date three (3) calendar days prior to the scheduled driving date. A PDA monitored 1-day and 7-day restrike will be performed after the initial pile driving unless a static load test is to be performed. From the collected information, the bearing capacity, pile driving stresses, pile integrity and other information can be determined.

Static Load Tests. When this method is used, a static load is applied to an in-place piling. The Contractor will furnish the measuring frame and jacks and the Department will furnish the dials and load cells. The test will be performed in accordance with specific AASHTO and ASTM test methods. As a general rule, when the total top settlement of the piling is greater than one (1) or one and one half $(1\frac{1}{2})$ inch(es), depending on the type and length of piling, the piling is considered a failure. Final determination of failure is dependent on the decision made by the Bridge Engineer.

The above test methods address bearing determination of conventional piles. In some cases, drilled shafts are constructed in lieu of driving conventional piling. Load testing of drilled shafts requires special instrumentation. General requirements for this method of testing are set out in the Standard

Specification. The Contractor is required to submit a plan for load testing drilled shafts for approval by the State Geotechnical Engineer prior to starting work.

Should there be any question as to the procedures to be followed, or cost considerations, the loading information, behavior information and recommendations should be routed through channels to the Construction Division. The Construction Division, with recommendations if necessary of the Bridge Division, the Materials Division and District Engineer, will determine procedures to be followed and whether or not contract modifications are indicated.

With the rapid changes in today's technology, advanced methods of determining pile bearing are being developed. The Project Engineer and Bridge Inspector should familiarize themselves with contract requirements relating to loading tests.

8.4 CURING CONCRETE

Careful attention is to be given to the proper curing and protection of concrete in conformity with the requirements of Subsection 804.03.17 of the Standard Specifications, or as this specification may be modified by Special Provision. Concrete surfaces are to be protected from conditions causing premature drying by strict enforcement of the methods specified. When wetted burlap is used, it shall be of the specified thickness and the surface of the concrete is to be kept thoroughly moist for the period of time indicated.

Particular attention is to be given in maintaining the proper moist condition when wetted burlap or other satisfactory material is used as a protective covering in the curing and protection of concrete surfaces, where such covering must necessarily be partially tented over reinforcing steel, or other projections, or may be subject to flapping or other conditions under which the curing material might not be in intimate contact with the concrete surface.

Sound practices must be devised and used to prevent drying of the concrete surfaces during the specified curing period.

8.5 REINFORCING STEEL

This applies to all construction projects where a listing of the reinforcing steel is furnished by the steel manufacturer and the listing is to be verified, corrected and used in computations of quantities for final payment.

At the completion of a project, the Project Engineer will furnish the Final Plans Engineer with a certified listing of accumulated steel quantities for final payment.

The procedure for obtaining a certified listing will be as follows:

- 1. The Project Engineer will check manufacturer's list, make any needed changes and verify the use of the listed reinforcement in the structure(s).
- 2. The Project Engineer will verify, using departmental issued personal computer software, quantities placed. This should be broken down into individual project numbers, structure numbers, station number, etc.

- 3. The Project Engineer will check computer listings against the manufacturer's bar list and certify that all bars, their lengths and number used are correct. If any errors are encountered the Project Engineer will make corrections on the computer listings, certify that all bars, their lengths and numbers as revised, are correct.
- 4. When the project is finalized, the Project Engineer will submit to the Final Plans Section, a computer listing with any changes, additions or deletions noted thereon, the quantity revised accordingly and the original steel documents. The Final Plans Section will review the listings, make spot checks, and verify final quantity.

CHAPTER 9 - ESTIMATES, MONTHLY AND FINAL, WITH SUPPORTING DATA

9.1 GENERAL

This section establishes uniform minimum requirements for keeping systematic and accurate records essential to work performed and computation of amounts earned.

On a day-to-day basis during construction of the project, systematic and accurate notes, sketches and other records are to be maintained as a basis for payments so that, as the work is completed, factually supported progress payments can be made and there will not be any delay in forwarding final plans of completed work and the final estimate to the Central Office after all work has been completed.

If the instructions contained in this Manual or related Rules conflict with any provision of the contract, the provisions of the contract will control. The procedures for proper record keeping can usually be found in the Standard Specifications, the contract documents contained in the Contractor's proposal, or in other Rules.

Each Pay Item in the contract carries a "Method of Measurement." If any conflict arises, the Contract Administration Division Director should be contacted by e-mail, or other written correspondence.

THE TIME TO START WORK ON THE FINAL PLANS COINCIDES WITH THE TIME THE FIRST ACTIVITY IS PERFORMED.

Preparation of the project diary must commence on the first day engineering salaries and expenses are charged. Field notes are records that become part of the data supporting the Final Estimate.

Record each day's conditions and events as they occur. Data for the final plans should be completed as the work on the project progresses. Complete and up-to-date records are required for proper construction management.

All measurements and bases of payment are to be in strict accordance with the Standard Specifications unless superseded by Supplemental Specifications, Plans, Special Provision(s), Notice(s) to Bidders or Supplemental Agreements. (Reference Subsection 105.04 of the Standard Specifications for ascending order of controlling documents).

Supporting data for the final estimate, where practical, should be submitted in a three-ring binder. Roadway and bridge items should be in separate folders. The roadway items should be separated. There should be a "Quantity Sheet" for each pay item, <u>signed by the Project Engineer</u>, in the order the pay item appears on Form CSD-200 stating the pay item, description, and the final quantity. The computations and supporting data, where practical, should be placed in the binder immediately following the quantity page. Data that cannot be put in the binder, such as field books and computer printouts, should be placed in envelopes, clearly stating the pay item and the final quantity. These envelopes should be numbered for identification purposes. All data not in the binder should be referenced on pages immediately following the quantity page.

A quantity sheet, signed by the Project Engineer, should be submitted for each pay item including lump sum pay items and items with a zero (0) quantity.

For uniformity regarding decimals for listing quantities in the final reports and final estimates, the table in <u>Section 9.4.2, Section 100, c</u> of this Manual should be used.

All sketches, computations, and reports should show where the data was obtained. For example: If the data was obtained from the plans, indicate the plan sheet number. If the data was obtained from a table, include the manual name, the page number, and the table as appropriate. Clearly identify the location so that a person not familiar with the procedures or area could locate the data.

When quantities are computed by Microstation, electronic data should be submitted in accordance with <u>Section 9.6, 1</u> of this Manual, or the MDOT Survey Manual.

Forms available on the Contract Administration website may be used for computation of quantities. However, when an item is measured by conventional means and computed by electronic spreadsheets or programs, the field notes or other recorded documentation of this data should be submitted. Do not just submit the spreadsheets. It must be shown where the input data was obtained. Quantities should be measured in accordance with the MDOT Specifications. If there is a conflict between these instructions and the Specifications, the Specifications will govern. See <u>Section 9.6, 2</u> of this Manual for more information.

A checklist, Form <u>CAD-900</u>, is included in this Manual to assist Project Engineers in assembling the Submission of Final Data.

9.2 MONTHLY PAYMENT(S)

Subsection 109.06 of the Standard Specifications provides the conditions under which a partial (monthly) estimate is to be made as a basis for progress payment to the Contractor. Subsection 109.06.2 of the Standard Specifications provides the basis upon which advance payments may be made as progress payments for certain stored or stockpiled non-perishable materials.

Monthly estimates will be submitted for payment on Forms CAD-001 & CAD-002, using Site Manager. Contractor cut-off dates and submission dates will be established by other Rules or by the Contract Administration Division Director. Fuel adjustments will not be computed after the month in which the Contractor completes all physical work on the project.

Monthly estimates should <u>not</u> be based on work <u>anticipated</u> to be performed, but shall be made on the basis of work which, on the day prescribed for making the estimate, has actually been satisfactorily performed.

In preparing partial estimates, the Project Engineer must exercise good judgment on those contract items where, due to the nature of the work, the quantities allowed will only be approximate. On other contract items, the Project Engineer will be able to determine reasonably accurate quantities (subject to re-check) to be allowed on partial estimates. <u>However, regardless of whether the quantities are approximate or reasonably accurate, a documented record must be placed in the project files, subject to review of the method, procedure, and basis for determining any quantity which is allowed on partial estimates. <u>THE FILES SHOULD INCLUDE DOCUMENTATION THAT CLEARLY SHOW HOW QUANTITIES WERE MEASURED AND CALCULATED.</u></u>

While generating a Site Manager monthly estimate, Site Manager may create a list of discrepancies (lack of payrolls, lack of material testing, overruns, etc.), which will not allow the estimate to be generated until those discrepancies are addressed. The Project Manager, at the request of the Project

Engineer, has the option to "Override" the discrepancies and address them at a later time. However, the Project Engineer/Manager should make all possible efforts to address all discrepancies listed. If the Project Engineer/Manager chooses the "Override" option, an acceptable reason is to be given. The Project Engineer should understand that if the "Override" option is chosen, that the estimate can be rejected at a higher level of approval due to an unacceptable reason.

9.3 PARTIAL FINAL PAYMENTS

If the Contractor's work has been completed and circumstances beyond the Project Engineer's control delay completion of the final estimate, a current estimate should be submitted, using checked final quantities and such other estimated quantities that are conservative in nature, without overpayment to the Contractor.

9.4 FINAL PAYMENT

9.4.1 General

Do not submit the final data to Contract Administration Division until all work has been satisfactorily completed, except for growth of grass.

Final data must be submitted as soon as possible after release of maintenance on the project. Thirty (30) days is considered ample time for completing the final data on the basis that data has been accumulated, calculated, and posted as items of work are completed during construction.

From the beginning of the project, all final and supporting data should be readily legible and accurate.

9.4.2 Supporting Data.

Supporting data for each project should include the following: (If there is more than one binder for roadway design items, include an index, indicating the contents of each binder)

- (1) One (1) set of ½-scale final construction plans. Changes should be made to the plans to reflect the project as-built conditions, using permanent red ink. Each sheet should be signed in the upper right-hand corner by the Project Engineer, using black ink. This should be his/her original signature. Facsimile stamps should not be used for any official purpose. All final quantities should be listed on the summary of quantities sheet if practical. If not, request an exception from final plans.
- (2) Computations of earth work quantities. Data as set forth in the MDOT Survey Manual.
- (3) All **ORIGINAL** imprinter and Contractor tickets and a SiteManager tabulation printout.
- (4) All original bar lists, sketches, computations, charts, reports, computerized computation forms, and any other data required to support the final quantities. Use approved programs like Microsoft Office or Microstation. Contact Final Plans before you use other programs.
- (5) One (1) signed copy of Form CAD-97 (Approved Hot Mix Asphalt Design to be Used When Determining Percent of Asphalt for Fuel Adjustments). Form CAD-97 is a SiteManager External Report.

- (6) One (1) signed copy of Form <u>CAD-12</u>, (Report of Deductions and Incentive Payment for Final Estimates).
- (7) Two (2) signed copies of Form CSD-200, with the overrun/underrun statements. (See <u>Section</u> <u>9.6, 4</u> of this Manual, and pages 3-2 through 3-13 of "Engineering Technician's Guide, FINAL ESTIMATES").
- (8) All original field notes.
- (9) Three (3) signed and notarized copies of the Project Engineer's Affidavit.
- (10) One (1) signed copy of the check off sheet. See the example forms at the end of this Manual for more information.
- (11) One (1) proposal.

Section 100 – General Provisions

a. Contract Modification

Modifications to quantities, pay items, time, etc. can be made with quantity adjustments, supplemental agreements and force account work. Project modifications are discussed in Chapter 1 of this Manual.

- b. Conversion Factors
 - (1) Small volumes designated for payment by "Final Measure" (F.M.) may be measured loose in the vehicle (LVM) and converted to contract measurement by multiplying the loose measure by 0.80. See Subsection 109.01 of the Standard Specifications. Small volumes designated for payment by "Loose Vehicle Measure" (LVM) may be measured by the average end area method and converted to contract measurement by multiplying the F.M. volume by 1.25. See Subsection 109.01 of the Standard Specifications
 - (2) Volumes designated for payment by FME may be measured in its original position by the average end area method and multiply the FM measure by 90 percent. Small volumes of surplus, excess excavation or other small volumes of excavation which are impractical to measure by the average end area method but are designated to be measured by FME may be measured LVM and multiply the loose measure by 72 percent.
 - (3) When requested by the Contractor and approved by the Engineer in writing, materials specified to be measured by volume may be weighed and such weights converted to the unit of volume indicated in the contract, or materials specified to be measured by weight may be measured by volume and such volume converted to the unit of weight indicated in the contract. Factors for conversion from weight measurement to volume measurement or from volume measurement to weight measurement, will be determined by the Engineer and shall be agreed to by the Contractor in writing before such method of measurement of pay quantities is used.
- c. Accuracy of Measurements

Measurements for calculating pay quantities should be taken to the most accurate division of the measured unit that is practical. Variations in the items being measured under field conditions limit

the precision of the measurement. The table below indicated the recommended number of significant figures beyond those listed being allowable.

SiteManager converts all entries for pay quantities to units with three decimal places. Therefore, the recommended maximum number of decimal places used in measuring pay quantities is three.

UNIT ABBREVIATION DECIMAL PLACES*

Acre	AC	
Cubic Foot	CF	2
Cubic Yard	CY	2
Each	EA	0
Gallon	GAL	0
Hours	HRS	0
Kilogallons	KGAL	
Linear Foot		
Lump Sum Percent	LS	
Mile		
Pound	LB	0
Square Foot	SF	
Square Yard		
Station		
Station Yard	STAY	
Cubic Yard	СҮ	2
Thousand		
Thousand Board Feet	KBF	
Ton	T	2

*Enter quantities in SiteManager to 3 decimal places, using zeros if needed.

d. Converting and Rounding Units of Measure

The accuracy of measurement is diminished each time a unit is converted to a larger unit or rounded to fewer decimal places. Converting and rounding should be kept to a minimum. It is recommended that pay items measured in feet but paid by the mile be converted once a month for entry of the pay item in SiteManager (converted daily if needed for site manager, but recalculated monthly for estimate payment). Converting each measured portion of traffic stripe to miles and then adding these numbers to get the pay quantity would introduce a significant overpayment. This also applies to converting square feet to acres and pounds to tons. Rounding off to fewer decimal places than recommended will result in underpayment of the quantity. The accepted method of rounding up if the last digit is five (5) or more and rounding down if the last digit is four (4) or less should be followed. The only exception to this is the rounding of truck volumes which are rounded up to the greater whole number if the last digit is nine (9) or above and down to the whole number if the last digit is less than nine (9).

Section 200 - Earthwork Items

a. Clearing and Grubbing

(1) Lump Sum Basis - No computations are necessary for this item unless an increase or decrease was made in the project right of way after the contract was awarded. If a change is made to the

right-of-way area after the contract is awarded, it will be necessary to make an adjustment in the payment for this item. In the event the contract carries a pay item for Clearing and Grubbing, Area Basis, the increase or decrease in payment is to be made by computing the area of the change and multiplying by the unit price bid, Area Basis.

If there is no unit price bid, Area Basis, it will be necessary to compute an increase or decrease in the Lump Sum measurement as provided for in Subsection 201.04.2 of the Standard Specifications.

The Roadway Design Division, upon request, will furnish the Project Engineer the total area to be cleared and grubbed within the right-of-way limits of the original plans. Add or subtract any increases or decreases in area of the right-of-way to be cleared and grubbed. This result is then divided by the original area, carrying the percentage to three decimal places (i.e., 101.337% or 98.663%). The lump sum price bid will then be adjusted by multiplying by this percentage.

(2) Area Basis. On an additional sheet, plot the gross areas of all areas involving payment for Clearing and Grubbing, Area Basis, including any adjustment as indicated above. Within each area, shade the area actually cleared and grubbed of small and large trees, giving relevant dimensions and angles or bearings. Show computations beside each area and indicate the net acreage within each shaded area. These areas may be computed using electronic recording and computing in accordance with Section 9.6, 1 of this Manual.

b. Removal of Structures and Obstructions

When payment is to be made on a unit basis (S.Y., L.F., etc.), all pertinent information (date, station, dimensions, inspector's initials, etc.) is to be recorded and submitted with other final data.

c. Excavation and Embankment

There are three common methods for measurement of earthwork. Each of these methods is explained below. Under certain circumstances, volumes may be measured by one method of measurement and converted to another method, by using the conversion factors found in Section 109.01 of the Standard Specifications. These conversions should be limited to very small quantities.

(1) Methods of Measurement

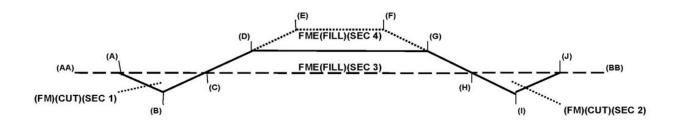
- (a) Final Measure (FM) -This method of measurement is used for "Cut Dirt". This is excavation that is measured in its natural state in the ground. It has not been disturbed. All threedimensional measurements for FM payment not included in cross-sections, such as measurements for ramps, undercuts, culverts, etc., should be shown separately but included in the final quantity.
- (b) Final Measure Embankment (FME) This method of measurement is used for "Fill Dirt". This is excavation that has been taken from its original or natural state, moved to a different location and compacted and measured in the compacted state. Theoretically, the soil could be put back in the same location, but this is seldom done. Moreover, after compacting, the volume of the soil would be smaller. FME embankment is usually above the ground, but it would still be FME embankment if it were placed in a hole in the ground and compacted.

In making FME measurement, the volume of embankment above the natural ground line displaced by structures should not be included. However, in the interest of simplification, and considering reasonable capabilities for accuracy of determination of small volumes of earthwork, applicable portions of structures shall not be deducted. Measurements and computations for deductions for structures should be shown separately and deducted from final quantities.

(c) Loose Vehicular Measurement (LVM) - This method of measurement is used when you do not have any measurements by cross-sections and the soil is moved by trucks. The trucks are measured and the volumes are computed for each truck using Form <u>CAD-230</u>. Tickets are kept daily to keep track of the number of loads delivered by each truck. When material is placed on the project, the inspector must validate (sign) the load ticket. The total volume delivered to the project is computed in SiteManager by multiplying the number of loads from each truck its volume and summing the results. For items measured by LVM, see <u>Section 9.6, 3</u> of this Manual.

(2) Classes of Excavation

- (a) UNCLASSIFIED EXCAVATION By definition, unclassified excavation covers all excavation except for those classes of excavation which separate pay items are provided. In most cases this is "cut dirt".
- (b) BORROW EXCAVATION Borrow excavation consists of soil required for embankments or what we will refer to as "fill dirt". The name borrow is derived from the fact that some or most of the soil that is used is obtained from a borrow pit outside of the right-of-way. However, borrow excavation may also be obtained from within the right of way. Borrow excavation obtained from within the right-of-way is usually designated as ESFE.


If the excavation for section (SEC 3) in FIGURE 1 (below) is obtained from the borrow pit or from ESFE, it is measured as (FME), borrow excavation. If the excavation for section (SEC 3) is obtained from sections (SEC 1) or (SEC 2), it is only paid once as (FM) unclassified excavation, by computing the volumes for sections (SEC 1) & (SEC 2). In this case, volume (SEC 3) is not measured for payment.

- (c) EXCESS EXCAVATION When shown as a pay item, excess excavation is excavation that cannot be used within the right-of-way and must be removed from the right-of-way. It will include any excess caused by the Contractor importing too much excavation from sources outside the right-of-way.
- (d) SURPLUS EXCAVATION When shown as a pay item, surplus excavation is excavation within the right-of-way which is in excess or unsuitable for embankments, but can be satisfactorily used or disposed of within the right-of-way. It is not used very often.
- (e) ESFE (ESTIMATED STATE FURNISHED EXCAVATION) ESFE is excavation on the right-of-way that may be used by the Contractor at no charge. ESFE material is specifically designated on the plans, but the quantities may vary. Change of ESFE quantities from the plans are not cause for compensation to the Contractor. ESFE is not a pay item itself, but can be paid as Unclassified or Borrow Excavation, depending on its usage as covered in the specifications.

- (3) Undercuts When an area must be undercut because the existing soil is not suitable for the roadbed, the volume of the undercut shall be computed. This volume will be used as the pay volume as follows:
 - (a) The soil removed from the undercut area shall be paid as unclassified excavation (FM), excess or surplus, as appropriate.
 - (b) The soil placed in the undercut area will be paid as borrow (FME) excavation.

If the soil removed from the undercut area is suitable for embankment and placed (wasted) on the slopes prior to final cross sections and measured with the embankment borrow excavation, the volume of the undercut area shall be converted to FME and subtracted from the embankment borrow excavation measured by the cross-sections.

(4) Measuring Earthwork - Embankments may be constructed of either unclassified or borrow excavation. Let's assume that we are going to measure and pay for the excavation required to build a roadway. Refer to Figure 1 as needed throughout this discussion.

EARTHWORK QUANTITIES

FIGURE 1

The first cross-section made would be (AA)-(BB). This would be the original ground elevation or the original cross-section. These original cross-sections should be made before the Contractor starts his earthwork operations.

The Contractor cuts out soil from sections (SEC 1) and (SEC 2) and if the cut material is suitable for placement in the roadway prism, places the soil in section (SEC 3). If the cut section is not suitable for use in the roadway prism it must be placed elsewhere on the right of way or disposed of off the right-of-way. When excess excavation is shown as a pay item, the Contractor is paid for all excavation (cut) that cannot be used in the roadway prism and cannot be satisfactorily used within the right-of-way. If there is not a pay item for excess excavation, the unsuitable excavation should be placed outside the roadway prism and paid as Unclassified Excavation.

- (a) If the cut area is not designated as ESFE,
 - (1) The cross-section (A), (B), (D), (G), (I), (J) is then made showing cut and fill. This cross- section (Final Unclassified Excavation & Original Borrow Excavation) is made before the Contractor starts moving in fill from the borrow pit. The Contractor is paid

for the cut sections (minus any material not suitable for the roadway prism) as Unclassified Excavation (FM) for areas (SEC 1) and (SEC 2).

- (2) The Contractor places the fill in section 4 from the borrow pit.
- (3) The final cross-section (C), (D), (E), (F), (G), (H) is made. Section (SEC 4) is paid as borrow excavation (FME).
- (b) If the cut area is designated as ESFE,
 - (1) ESFE that is not suitable for use in the roadway prism that is used to construct berms, flatten slopes or wasted on the right-of-way is paid as Borrow Excavation (FME). When the contract does not include a bid price for unclassified excavation, the undercut will be measured for payment under 203-EX, Borrow Excavation (ESFE) (FM) (AH), per cubic yard at a unit price equal to 75% of the contract unit price for Contractor furnished borrow excavation. (Conversion factors may be found in Section 109.1 of the Specifications)
 - (2) The Contractor cuts the soil from sections (SEC 1) and (SEC 2), places it in section (SEC 3) and then fills section (SEC 4) from the borrow pit.
 - (3) The final cross-section (A), (B), (E), (F), (I), (J) is made. Sections (SEC 3) and (SEC 4) are paid as borrow excavation (FME). In this case, the Contractor is not paid for any of the cut (Unclassified Excavation).

For items measured and computed by electronic methods, see The MDOT Survey Manual.

For excavation items measured by conventional methods, submit field books or other recorded data that clearly show location, sketches, measurements and calculations. If the measurement data is complicated and not easy to check, include supplemental sheets to simplify the measurement.

<u>d. Haul</u>

When the plans and proposal provide for haul of excavation measured as plan haul distance (P.H.D.), the final quantity for Haul of Excavation will be adjusted proportionately to the increase or decrease in the total excavation quantity determined from final cross-sectional measurement of accepted work.

<u>Actual Excavation x Planned Haul</u> = Paid Haul

For any other situations, contact Final Plans for submission requirements.

e. Structure Excavation

Electronic spreadsheets may be used (See <u>Section 9.6, 2</u> of this Manual). However, the field notes that have the data, sketches and location (Station Limitations) recorded on these forms must be included. The data used as input to these forms should be in a format that can be easily checked to insure that the correct data is entered on the forms.

If you do not use the electronic spreadsheets, the applicable tables in <u>Section 9.4, 3</u> of this Manual shall be used to determine quantities for payment of Structure Excavation. To facilitate final checking, the excavation quantities are to be listed in tabular form as in the following example:

TABULATION OF STRUCTURE EXCAVATION – PIPE CULVERTS

	<i>.</i>	a. 1 1	No.	Table	T .1	D.	Avg cut		Cu. Yds.
<u>Station</u>	Size	Standard	Lines	No.	Length	Pipe	U.S.	D.S.	Str.
10 + 26	30"	3130	2	1,4	96'	2.1	0.8	0.2	46.6 (1)
29+13	51"x31"	D-FE-2	1	7	60'	1.5	0.0	0.3	28.7 (2)
(1) Sta. 1	0 + 26								
		2.61)] x 0.1	17 x (2.10	0 + 0.27)	=	36.58			
-		+0.27+0.3		,	=	5.75			
D.S.	- 3.66 (0.2	+0.27+0.3	5)		=	3.55			
Toew	alls - 2 x 0	.33	·		=	<u>0.66</u>			
						46.54	= 46.5 0	С.Ү.	
(2) Sta. 2	9 + 13								
		x(1.50+0)	.38)		=	25.94			
1	- 2.46 x (0.	· ·			=	0.93			
	- 2.46 x (0.				=	1.67			
	- Toewall	,			=	<u>0.13</u>			
						28.67	= 28.7 (C.Y.	

TABULATION OF STRUCTURE EXCAVATION – BOX CULVERTS

Station	Table Size & Standard(s)	Length	No.	Barrel	<u>Avg cu</u> U.S.	<u>t to F.L.</u> D.S.	Cu. Yds. Str.
50+00	IBS-10x6, ISK-30-4W	822'	30	1.2	1.3	1.1	159.30 (3)
U.S. H D.S. H	0 + 100 - 82.2 x 0.49 x (1.2 + 0.79) H'Wall - 21.79 x (1.3 + 0.58) H'Wall - 21.79 x (1.1 + 0.58) alls - 2 x 0.78		= = =	80.1 40.9 36.6 <u>1.5</u> 159.3	97 51 56	0.3 C.Y. S	Str.

Structure excavation is not allowed for Inlets. One (1) extra foot is added to the pipe length to determine the quantity where the pipe enters the inlet. For example, if 20 feet measured length of pipe is connected on each end to two inlets, then one foot is added to each end of the pipe length, for 22 feet of structure excavation. If the 20 feet measured length of pipe were connected to an inlet on one end and a concrete end section on the other end, only one extra foot would be added for 21 feet of structure excavation, because the one extra foot on the F.E.S. end is included in the factor for the F.E.S.

Section 210 – Roadside Development

Prior to performing Roadside Development items, the Project Engineer should prepare a data recording system such that all source information may be properly and systematically entered to serve as final data or to be transferred to required forms for final data. Any additional field data should be noted and retained in the project files for inspection until final payment to the Contractor has been made. Should a question arise during checking of the final quantities, the Final Plans Section may request the Project Engineer submit such source document(s) as a supplement to the final data.

a. Topsoil and Sod Mulch

If Topsoil or Sod Mulch is to be measured by the cubic yard (LVM), reference Section 9.6, 3 of this Manual. However, any excess topsoil placed, computed in accordance with the requirements of Subsection 211.03.4 of the Standard Specifications, is to be deducted as specified. If topsoil is specified by the square yard, actual measurements of each area and depth are to be recorded and areas computed and shown. Area and depths are to be computed in accordance with Subsection 211.03.4 of the Standard Specifications and deductions made, if any, as provided therein. All measurements, capacities and computations, all tickets, and electronic files are to be submitted as final data.

b. Ground Preparation, Sprigging, and Solid Sodding

Actual measurements of these areas are to be recorded and submitted as final data.

c. Fertilizer

Record of fertilizers are to be kept in accordance with Section 2.6 of this Manual. For Grassing (by acre) fertilizer is not measured for separate pay.

Agricultural Limestone is to be weighed in tons on a commercial scale or other scale approved by the Project Engineer.

d. Seed

The records of seed of each type required and used are to be made in accordance with <u>Section 2.6.2</u> of the Manual. In weighing seeds specified to be paid for by the pound and for determination of distribution of application, suitable scales are to be used for weighing these small quantities. Truck scales are not suitable for weighing such small quantities. The Project Engineer should insure that seeds are weighed by competent personnel on scales that are accurate and approved by the Engineer. Periodic checks of such scales by testing with known weights in the range of use should be made as to such scale checks. Use of weights listed on commercial bags of seed is acceptable. For Grassing (by acre) seed is not measured for separate pay.

e. Vegetative and Bituminous Materials for Mulch

Each truck load of vegetative material should be weighed on approved scales provided by the Contractor or approved commercial scales. An average weight per bale may be determined by either of the following two methods:

(1) The net weight of the mulch on the truck may be divided by the number of bales on the truck to establish an average weight per bale to be used in determining the quantity applied; or

(2) A sample of approximately ten (10) bales designated at random by the Engineer or inspector may be taken and weighed collectively or individually and the total weight divided by the number of bales in the sample to obtain an average weight to the nearest pound per bale to be used for the truckload from which the sample was taken.

In either case, all bales received in that particular truckload must be isolated until used and the average weight per bale applied thereto.

The total net weight of each load of material and the average weight per bale are to be recorded by date and time, along with other data as required in Section 2.8 of the Manual.

To verify the amount of vegetative material used from the truck, one of the following methods should be used:

- (a) Keep the truck under surveillance until all of the material is used;
- (b) Actually count and record the bales as they are used; or
- (c) Count and record the number of bales on the truck before beginning each application and the number of bales left on the truck each time it leaves the application site.

Measurement of bituminous material for mulch is to be made as for other bituminous materials. The original of Form $\underline{CSD-481}$ is to be submitted as final data.

f. Paved Ditches

Location, sketches of typical section(s), lengths and computation are to be recorded, signed and submitted as final data.

g. Miscellaneous Items

All field books, tickets, sketches, computations, etc., necessary to substantiate final measurement, as set out in the contract for miscellaneous items are to be signed and submitted as final data.

Section 300 - Bases

a. Granular Courses, Stabilizer Aggregates, Stone Base, etc.

For items paid by the ton, the weight is recorded on either Contractor-generated tickets or MDOT imprinter tickets. When material is placed on the project, the inspector must validate (sign) the load ticket. The tickets should be input daily into SiteManager. A printout for each day, indicating the daily weight total, should be wrapped around the original copy of the tickets for that day. When the project is complete, the original tickets and a complete printout should be submitted to Final Plans.

For Items paid by LVM, reference Section 9.6, 3 of this Manual.

b. Lime, Portland Cement, Lime-Cement and Lime-Fly Ash Treated Courses

(1) The procedure to be used for the measurement of lime and cement is explained in Section 1.3.25 of the Manual. In addition, in any section, if the spread of cement or lime exceeds the 5% allowable tolerance, the amount to be deducted should be shown beside the quantities for the applicable ticket number(s) on the computer listing. The adjusted total of the computer

listing should then equal the total of the net amounts for pay shown on the daily reports, Form TMD-125.

(2) In addition to the imprinter tickets and the computer listings(s), the original copies of Form <u>TMD-125</u> (Daily Report of Chemical Stabilization) must be submitted as final data. Each Daily Report should have attached to it all the imprinter tickets for lime or cement used that day, with a corresponding adding machine tape showing the total ticket quantity. Forms <u>TMD-125</u> must be completely filled out and signed by the Inspector. The Contractor is not entitled to payment for material wasted outside of the spreading limits by contending that it should be allowed under the five (5) percent spreading tolerance permitted within the spreading limits. Prime Coat should be documented on Form <u>CAD-240</u>.

Excess material due to waste or over-application, or both, must be determined and deducted for each section such that the daily reports will show the net amount for payment.

The Project Office will check Form TMD-725 calculations by entering the data into the electronic forms. See <u>Section 9.6, 2</u> of this Manual for more information.

(3) The area to be processed must be determined before the lime or cement is spread on a section. This area is necessary so that the correct amount of lime or cement can be ordered and for the mixing item for which the Contractor is to be paid. Thus, irregular areas must also be measured and computed before the spread of lime or cement begins.

The areas of irregular sections may be computed by applicable mathematical formulae or methods. Sketches and computations of areas are also to be submitted as final data. If the Project Engineer desires, areas may be computed using electronic and computing equipment in accordance with <u>Section 9.6, 1</u> of this Manual where a large number of complicated irregular areas are involved. A recap of all areas for payment should accompany the other final data. A convenient method for making this recap would be to identify each sketch on which computations are made for the respective areas and each of the other computations by prominent number, and on the recap merely list the area numbers in order and the area, with appropriate totals. This would eliminate duplicating the identification of each area.

c. In-Grade Modification, Mechanically Stabilized Courses and In-Grade Preparation

- (1) For measurements by the square yard: The areas for square yard can be measured by tape, with the dimensions and station limitations recorded on a sketch on the right-hand side of a field book. Calculations should be recorded on the left-hand side of the field book.
- (2) For items to be measured by the station or mile, see Subsection 305.04 of the Standard Specifications for In-Grade Modification and Subsection 321.04 of the Standard Specifications for In-Grade Preparation.
- (3) For stabilizer aggregates by volume, reference <u>Section 9.6, 3</u> of this Manual for more information.
- (4) For stabilizer aggregates by weight, the weight is recorded on either Contractor-generated tickets or MDOT imprinter tickets. When material is placed on the project, the inspector must validate (sign) the load ticket. The tickets should be input daily into SiteManager. A printout

for each day, indicating the daily weight total, should be wrapped around the original copy of the tickets for that day. When the project is complete, all the original tickets with the complete printout should be submitted to Final Plans.

(5) Although a contract will seldom contain a requirement for local stabilizer aggregates measured by the cubic yard, original position measurement, computations and submission of final data are to be made in the same manner as excavation.

Section 400 – Asphalt Pavements

a. Asphalt Courses

Asphalt courses are normally measured for payment on a weight (ton) basis. The weight is recorded on Contractor-generated tickets. When material is placed on the project, the inspector must validate (sign) the load ticket. The tickets should be input daily into SiteManager. A printout for each day, indicating the daily weight total, should be wrapped around the original copy of the tickets for that day. When the project is complete, all the original tickets with the complete printout should be submitted to Final Plans. Tack Coat should be recorded on form <u>CAD-240</u>. Adjustments to payment based on laboratory testing or smoothness should be documented on Forms <u>CAD-280</u> and <u>CAD-260</u> respectively.

b. Surface Treatments

Cover and seal aggregates will be measured for payment in accordance with Section 1.3.22 of this Manual. The quantity of aggregate spread for each shot of asphalt cement should be recorded on Form <u>CSD-724</u>. The quantity for payment cannot exceed the quantity ordered plus five (5) percent for regular areas, or plus fifteen (15) percent for irregular areas where hand spraying is required (see Subsection 410.04 of the Standard Specifications).

Liquid asphaltic materials or tars will be measured for payment by the gallon. Unless otherwise indicated, the distributor tank measurement will be used. Temperature corrections are to be made in accordance with Subsection 702.02 of the Standard Specifications. Tables for conversion will be available from the Materials Engineer.

Measurements and volume determinations are to be recorded on Form <u>CSD-724</u>, Surface Treatment - Report of Materials Applied.

The Contractor is required to have the distributor calibrated by an agency and in a manner approved by the Department of Transportation. Prior to a distributor being used on the project, the Engineer must determine that the distributor is properly calibrated as evidenced by an approved calibration chart identified for the particular distributor. The Standard Specifications provide that under certain conditions, MDOT may perform the calibration.

Form $\underline{\text{CSD-724}}$ is to be completed for all bituminous materials when paid for on a gallon basis. The original copies of Form $\underline{\text{CSD-724}}$ are to be submitted with the final data.

The certified chart furnished for a distributor is based on the unit at the time the calibration was made. Any subsequent change or alteration made in the unit which would change the "liquid level" or calibrated capacity of the distributor tank will void the original calibration, and the distributor must be calibrated before further use.

When any doubt exists as to the capacity of the distributor, it should be checked for total capacity. If the total capacity is not within reasonably close conformity with that shown on the calibration sheet for the unit, the distributor must be completely recalibrated.

If surface treatment is to be measured and paid for on a square yard basis, measurement and documentation should be as set out in the paragraphs pertaining to mixing areas for lime or cement treatment.

Section 500 – Rigid Pavement

a. Concrete Pavement and Bridge End Pavement

These items are usually measured and paid for on a square yard basis. Electronic measuring and computing as set forth in <u>Section 9.6, 1</u> of this Manual may be used to a considerable advantage where a large number of irregular areas are involved.

The third paragraph of Subsection 109.01 of the Standard Specifications provides controlling dimensions for making measurements for computation of areas.

If coring reveals that portions of the completed pavement are deficient by more than 0.2 inches, but not more than 1.0 inch for the plan thickness, an adjustment in the unit price must be made in accordance with Subsections 501.05.2 of the Standard Specifications. In addition, if any core indicates a deficiency of more than one (1) inch, the area of such deficient thickness must be carefully determined as provided and, unless pavement in such area is removed and replaced with pavement meeting all of the requirements of the contract, such area deficient by more than 1.0 inch must be accurately computed for no payment. The Engineer must work closely with the coring crew to make these determinations. All sketches, computations, and recap sheets are to be submitted as final data.

b. Expansion Joints and Lug Anchors

Expansion joints and lug anchors are to be measured and paid for by the linear foot. Field books showing the locations and lengths of each joint and lug anchor should be submitted as final data.

Section 600 – Incidental Construction

a. Structural Concrete

Some of the Standard Drawings in the plans have the following note: "The quantities shown will be used as the basis for final payment unless this plan is modified." If applicable, these quantities will be used to determine final pay quantities. For SS-2 type storm sewer inlets, use the table in <u>Section 9.4.5</u> of this Manual.

For special design concrete structures, submit a drawing and calculations unless the plans state that the quantities shown may be used for final payment. The drawing and calculations should be made easy to check. An electronic spreadsheets approved by Contract Administration Division may be used for computation of quantities. If the quantities are computed by electronic spreadsheets or programs, the field books or other recorded documentation of this data should be submitted so that the data in the field books can be easily correlated with the data in the spreadsheets.

b. Reinforcement

Some of the Standard Drawings in the plans have the following note: "The quantities shown will be used as the basis for final payment unless this plan is modified." If applicable, these quantities will be used to determine final pay quantities. For SS-2 type storm sewer inlets, use the table in Section 9.4, 5 of this Manual.

For special design concrete structures, submit a drawing and calculations unless the plans state that the quantities shown may be used for final payment. The electronic spreadsheet, Form <u>CAD-250</u> may be used for computation of quantities. Input the data from the bar list into spreadsheet. Submit the original bar list with the computer printout when submitting the final data.

c. Pipe Culverts, Storm Drains, and Underdrains

These items will be measured by the linear foot as set out in Subsections 603.04 and 605.04 of the Standard Specifications. The locations and lengths of each type and size of pipe are to be shown on the final plans. Documentation showing this information and date or installation and initials of the inspector who witnessed the installation should be submitted as final data.

d. Sidewalks and Concrete Driveways

These items will be measured for payment by the square yard. Quantities will be supported by accompanying sketches and computations where necessary. Sidewalks should be listed by station limits, showing the number of square yards in each section. Driveways should be listed by station and the square yard.

e. Curb, Gutter, and Curb and Gutter

The sketches and other information for curb & gutters and concrete barriers may be recorded in a standard field book and computed by using conventional methods.

The electronic spread sheet (CAD-290) from the MDOT CONTRACT ADMINISTRATION Web Site Final Plans Quantity Menu may be used to tabulate curb & gutter and concrete barriers quantities. If the electronic spreadsheets are used, the field books or other recorded documentation of the data used for input to these spreadsheets should also be submitted. It must be shown where the input data was obtained. The field books or other recorded documentation of this data should be arranged in a manner such that the data in the field books can be easily correlated with the data in the spreadsheets.

f. Right-of-Way Markers

On the final plans, check (X) in permanent red ink those markers placed in accordance with the plans. No sketches are required for right-of-way markers.

g. Pressure Grouting Items

These items will be measured in accordance with Subsection 512.04 of the Standard Specifications. The number and location of holes are to be recorded in a bound field book. The Project Engineer, or the inspector, should devise systematic methods for accurately determining quantities of materials for which pay items are included in the contract depending upon specific procedures permitted to be used by the Contractor in the manufacture of the grout. This is necessary so that the composition of the grout can be controlled and correct measurements recorded for payment. Tickets should be written for materials measured LVM, with computations to verify the LVM measurement. Measurement of other ingredients of the grout mixture are to be made in accordance

with the controlling specifications and adequately recorded in a bound field book. Field books, tickets, and computations are to be submitted as final data.

h. Traffic Stripe

Measurements showing station limits and lengths of each type stripe should be submitted as final data. Sketches should be provided for all striping items except striping items that run parallel to the roadway. Rounding on intermediate calculations before conversion from LF to Mile should be minimized.

i. Traffic Signs

Traffic Signs and Delineators will be measured and payed in accordance with Subsection 630.04 of the Standard Specifications. Concrete and reinforcing steel quantities for sign post foundations are shown in <u>Section 9.4, 4</u> of this Manual.

j. Miscellaneous Items

All field notes, tickets, sketches, computations, invoices, statements, etc., necessary to substantiate final measurement as set out in the Specifications should be signed and submitted as final data.

Section 700 – Materials and Tests

<u>a. General</u>

The various sections of Division 700 of the Standard Specifications must be closely coordinated with the applicable sections of the general provisions and construction sections.

From time to time, field personnel should review Subsection 700.01 and the other subsections referred therein.

All field personnel should be thoroughly familiar with the glossary of terms and definitions described in Subsection 700.02 of the Standard Specifications, particularly the terms "Frame", "Increment", "Lot", "Sample", "Specified Value", "Test Portion", "Test Result", "Test Value", "Unit of Deviation", and "Verification Test." Sometimes the term "Test Result" has been incorrectly used as "Test Value" and vice versa. These terms are NOT interchangeable and should be used only as defined in the Glossary of Terms.

b. Statistically Based Acceptance Plan

Subsection 700.04 of the Standard Specifications provides quantitative values for the determination of reasonably close conformity and, supplemented by certain special provisions contained in the contract, provides a formula for an automatic price adjustment of work or materials beyond reasonably close conformity. Field personnel should be thoroughly familiar with this subsection of the Specifications, and it should be used precisely as stated in the Standard Specifications and other contract documents.

The last paragraph of Subsection 700.04 of the Standard Specifications is important in the determination of reasonably close conformity in cases where quantitative values have not been set up for such determination.

Section 800 – Bridges and Structures

a. Excavation

Measurement and payment shall be as set out in Subsections 801.04 and 801.05 of the Standard Specifications. Sufficient measurement of depths of each excavation are to be made to determine an accurate average depth to be used in final computations. Sketches and computations are to be submitted as final data.

b. Piling and Loading Tests

Forms <u>BRD-761</u> and <u>BRD-601</u>, as applicable, and Form <u>BRD-203</u> are to be submitted as final data for bearing piles. Number, dimensions, and computations of areas are to be submitted as final data for sheet piling.

c. Concrete

Upon request, the Bridge Engineer will furnish computations of quantities of bridge concrete. If no modifications are made in the bridge details and if the Project Engineer does not have reason to re-compute the quantities, the computations and quantities furnished by the Bridge Engineer should be submitted as final data. If modifications were made, or the fillets or build-ups over beams vary from those indicated on the plans, sketches, dimensions, and computations of such authorized changes and the adjusted final quantities are to be attached to the computations from the Bridge Engineer and submitted as final data.

d. Reinforcement

Input the data from the bar list into the latest computer tabulation program for reinforcing steel approved by the Contract Administration Division. The Contract Administration Division will provide input instructions.

e. Structural Steel

Structural steel is to be measured for payment in accordance with Subsection 810.04 of the Standard Specifications. Upon request, the Bridge Division will furnish structural steel computations under the same provisions as for concrete herein above, which list of shapes, plates, etc. and computations of weights or authorized modifications thereof are to be submitted as final data.

f. Steel Grid Flooring

Sketches showing dimensions and computations are to be submitted as final data.

g. Railing

Submit a tabulation of rail lengths according to nominal measurements shown on the span details, between beginning and ending of railing at abutments, as indicated on the plans.

h. Beams

The length shown on the plans for each particular beam will be used as a basis for final measurement for payment. Tabulations of these lengths should be submitted as final data.

i. Timber

Timber is to be measured for payment in thousand (M) board feet, nominal dimensions:

$$\left(\frac{W" \times D"}{12}\right) \times L'$$

A tabulation showing nominal dimensions, lengths, and board feet should be submitted as final data.

j. Slope Paving and Concrete Riprap in Bags

These items are to be measured for payment by the theoretical yield and the number of bags of cement used, based on batch count and the cement factor of the design mix. Unless otherwise provided in the contract, other methods of measurement are not acceptable.

k. Miscellaneous Items

Final quantities for miscellaneous items not otherwise indicated herein are to be supported by field books, tickets, sketches, statements, invoices, etc., necessary to substantiate final measurement, as set out in the specifications, and which are to be submitted as final data.

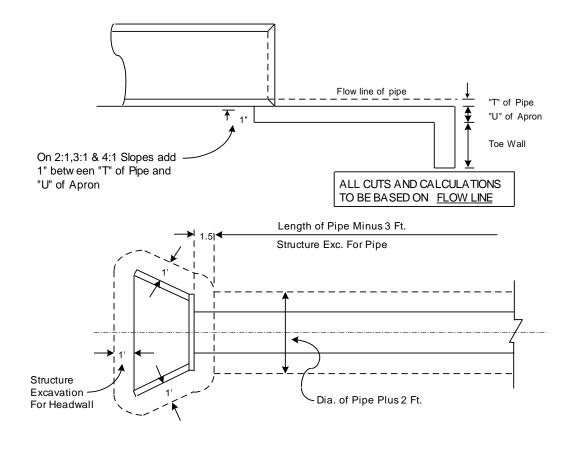
9.4.3 Structure Excavation Tables - Final Quantity Data

FIGURE

1 Structure Excavation (General) for Pipes and Headwalls

PIPE CULVERT AND TABLES

- <u>1</u> Deductions for Skewed Pipe (With Headwalls)
- 2 Structure Excavation for Pipe Culvert and Headwalls 2:1 Slopes
- 3 Structure Excavation for Pipe Culvert and Headwalls 3:1 Slopes
- 4 Structure Excavation for Pipe Culvert and Headwalls 4:1 Slopes
- 5 Structure Excavation for Pipe Culvert and Flared End Sections (D-FE-1)
- 6 Structure Excavation Arch Pipe and Flared End Sections (D-FE-2)
- 6A Structure Excavation Arch Pipe and Flared End Sections (Type II)
- 6B Structure Excavation Precast Box Culvert and Precast Headwalls
- 7 Deductions for Skewed Arch Pipe (With Headwalls)
- 8 Structure Excavation for Arch Pipe Culvert and Headwalls
- 9 Structure Excavation for Concrete Pipe Cattle Pass and Headwalls
- 10 Structure Excavation for Corrugated Steel Pipe & Flared End Sections


11-19 Blank

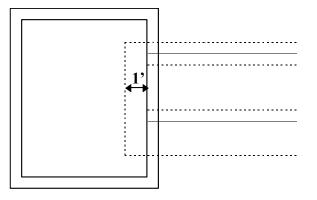
BOX CULVERT TABLES

- 20 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 2:1 Slopes
- 21 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 15° Skew 2:1 Slopes
- 22 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 30° Skew 2:1 Slopes
- 23 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 45° 2:1 Slopes
- 24 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 3:1 Slopes
- 25 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 15° Skew 3:1 Slopes
- 26 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 30° Skew 3:1 Slopes
- 27 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 45° Skew 3:1 Slopes
- 28 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 4:1 Slopes
- 29 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 15° 4:1 Slopes
- 30 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 30° Skew 4:1 Slopes
- 31 Structure Excavation for IBS and IBD and BS and BD Series Box Culverts 45° Skew 4:1 Slopes

STRUCTURE EXCAVATION FOR PIPE AND HEADWALLS General

2:1, 3:1, AND 4:1 SLOPES

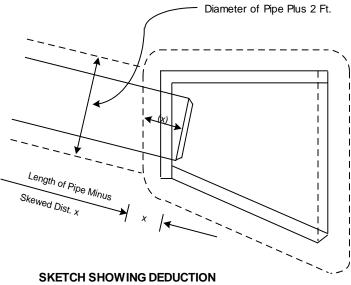
SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION


EXAMPLE: 48' - 30' single line pipe culvert (Standard HW-2100). From field observations the average cut to flow line is as follows:

Pipe 2.3 ft., upstream headwall 2.1 ft., downstream headwall 1.8 ft.

From Table 2: Str.Exc.=(48-3) (0.17)(2.57)+(2.39 x 2.95)+(2.39x2.95)+(0.26x2) = 33.56 Pay 33.6 Cu. Yds.

Figure 1


STRUCTURE EXCAVATION WHERE A PIPE ENTERS AN INLET

Since payment for structure excavation is not made for inlets, when pipe(s) go into an inlet, add one foot to the length of the pipe as long as the size of the inlet permits. Where more than one pipe goes into an inlet, do not compute volume for any overlapping.

NOTE: The quantities shown in the following tables are correct and will be used on the final estimate as the basis of payment, unless authorized modifications are made. Use same shell thickness for Class III and Class IV Pipe.

Figure 1 - (Cont'd.)

Note: The distances (x) shown in the above table are to be deducted from all special design skewed pipe culvert lengths when calculating structure excavation.

The distance (x) was computed with "U" as listed on the standard Headwalls 2:1 slopes. Where "U" is different from this standard the distance (x) must be computed.

SKETCH SHOWING DEDUCTION
FOR SKEWED PIPE WITH
HEADWALLS.

SIZE	0° SKEW	WITH HEADWALL SKEW 15° (x)	SKEW 30°(x)	SKEW 45° (x)
15"	1.50'	1.77'	2.19'	2.91'
18"	1.50'	1.80'	2.26'	3.04'
24"	1.50'	1.88'	2.43'	3.33'
30"	1.50'	1.96'	2.61	3.64'
36"	1.50'	2.04'	2.76'	3.92'
42"	1.50'	2.11'	2.93'	4.20'
48"	1.50	2.19'	3.10'	4.50'
54"	1.50'	2.28'	3.30'	4.83'
60"	1.50'	2.36'	3.46'	5.12
66"	1.54'	2.48'	3.68'	5.47'
72"	1.58'	2.60'	3.90'	5.82'
84"	1.67'	2.84	4.33'	6.52'

DEDUCTIONS EACH END FOR SKEWED PIPES

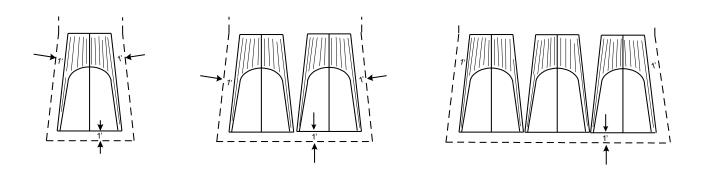
Example: 48' - 30", 45° Skew, Single Line Pipe Culvert, 2:1 Slope
From field determinations, the average cut to flow line is as follows:
Pipe 2.3 Ft.; U.S. Headwall 2.1 Ft.; D.S. headwall 1.8'. From
[(48-7.28)0.17] 2.57 + (3.21 x 2.95) + (3.21 x 2.65) + (2 x 0.37) = 36.51 C.Y.
Pay 36.5 Cu. Yds.

See Table 7 for Deduction for Skewed Arch Pipes (With Headwalls)

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR PIPE CULVERT 2:1 SLOPES

					HW-21	00 0° - 1	5° SKEW			
		S	INGLE LI	NE	D	OUBLE L	INE	Т	RIPLE LIN	νE
		Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.
"T"	PIPE	per Ft.	One	One	per Ft.	One	One	per Ft.	One	One
	SIZE	of Pipe	Hdwl.	toe wall	of Pipe	Hdwl.	toe wall	of Pipe	Hdwl.	Toe wall
2"	15"	.12	1.23	.15	.22	1.72	.22	.31	2.20	.29
2"	18"	.13	1.44	.18	.23	2.02	.24	.34	2.60	.32
2½"	24"	.15	1.92	.22	.27	2.72	.30	.40	3.52	.40
31/4"	30"	.17	2.39	.26	.33	3.50	.37	.49	4.62	.49
31/2"	36"	.19	2.93	.30	.37	4.39	.43	.56	5.85	.57
4"	42"	.20	3.50	.34	.42	5.34	.49	.64	7.18	.65
4½"	48"	.22	4.16	.38	.47	6.45	.55	.72	8.74	.74
5½"	54"	.24	4.85	.42	.52	7.64	.62	.81	10.43	.83
6"	60"	.26	5.69	.46	.57	9.04	.67	.89	12.40	.92
6½"	66"	.28	6.78	.49	.62	10.83	.75	.97	14.88	1.01
7"	72"	.30	7.67	.51	.67	12.35	.79	1.05	17.02	1.08
8"	84"	.33	9.62	.55	.77	15.67	.88	1.21	21.75	1.21
				HW-2130) 30°	SKEW				<u>. </u>
2"	15"	.12	1.27	.16	.22	1.83	.24	.31	2.39	.33
2"	18"	.13	1.48	.18	.23	2.15	.27	.34	2.81	.36
21/2"	24"	.15	1.97	.22	.27	2.90	.33	.40	3.82	.44
31/4"	30"	.17	2.46	.26	.33	3.75	.40	.49	5.03	.54
31/2"	36"	.19	3.02	.30	.37	4.70	.46	.56	6.39	.63
4"	42"	.20	3.60	.34	.42	5.73	.53	.64	7.86	.72
4½"	48"	.22	4.28	.38	.47	6.93	.60	.72	9.57	.81
5½"	54"	.24	5.00	.42	.52	8.23	.67	.81	11.45	.91
6"	60"	.26	5.87	.46	.57	9.75	.73	89	13.63	1.00
6½"	66"	.28	6.99	.49	.62	11.66	.78	.97	16.34	1.07
7"	72"	.30	7.92	.51	.67	13.32	.82	1.05	18.72	1.13
8"	84"	.33	9.94	.55	.77	16.94	.89	1.21	23.94	1.22
				HW-2145	5 45°	SKEW				
2"	15"	.12	1.62	.22	.22	2.31	.32	.31	3.00	.42
2"	18"	.13	2.16	.25	.23	2.98	.36	.34	3.79	.47
2½"	24"	.15	2.54	.32	.27	3.67	.45	.40	4.81	.59
31/4"	30"	.17	3.21	.37	.33	4.78	.54	.49	6.35	.71
31/2"	36"	.19	3.97	.43	.37	6.03	.63	.56	8.10	.83
4"	42"	.20	4.76	.49	.42	7.37	.72	.64	9.98	.95
41/2"	48"	.22	5.70	.54	.47	8.94	.81	.72	12.18	1.07
5½"	54"	.24	6.68	.60	.52	10.63	.90	.81	14.58	1.20
6"	60"	.26	7.87	.67	.57	12.62	1.00	.89	17.37	1.34
6½"	66"	.28	9.42	.72	.62	15.14	1.09	.97	20.87	1.45
7"	72"	.30	10.68	.75	.67	17.29	1.15	1.05	23.90	1.55
8"	84"	.33	13.44	.81	.77	22.01	1.27	1.21	30.58	1.74

			HW-3100 0° - 15° SKEW										
					0			Т		NIE			
			SINGLE LI			DUBLE LI			Cra V 1				
"Т"	PIPE	Cu.Yds. per Ft.	Cu. Yds. One	Cu.Yds. One	Cu.Yds.	Cu.Yds. One	Cu.Yds. One	Cu.Yds. per Ft.	Cu.Yds. One	Cu.Yds. One			
1	SIZE	of Pipe	Hdwl.	toe wall	per Ft. of Pipe	Hdwl.	toe wall	of Pipe	Hdwl.	toe wall			
2"	15"	.12	1.53	.16	.22	2.14	.23	.31	2.75	.30			
2"	13	.12	1.33	.10	.22	2.14	.23	.31	3.28	.30			
2 ¹ / ₂ "	24"	.15	2.45	.18	.23	3.51	.20	.34	4.55	.34 .41			
3 ¹ / ₄ "	30"	.13	3.10	.22	.33	4.57	.32	.40	6.04	.50			
$3\frac{74}{3\frac{1}{2}}$	36"	.17	3.10	.20	.33	4. <i>3</i> 7 5.79	.38	.49	7.75	.58			
372 4"	42"	.19	4.62	.30	.37	7.11	.44	.50	9.61	.38			
4 4 ¹ / ₂ "	42 48"												
		.22	5.54	.37	.47	8.67	.56	.72	11.79	.75			
5½"	54"	.24	6.50	.41	.52	10.33	.62	.81	14.17	.84			
6"	60"	.26	7.68	.45	.57	12.32	.69	.89	16.97	.96			
6½"	66"	.28	9.21	.49	.62	14.84	.75	.97	20.47	.99			
7"	72"	.30	10.46	.51	.67	16.98	.78	1.05	23.51	1.04			
8"	84"	.33	13.19	.54	.77	21.70	.83	1.21	30.21	1.12			
	1 7 11	10	1.54	HW - 3130			•		0.15	2.5			
2"	15"	.12	1.76	.20	.22	2.46	.28	.31	3.17	.37			
2"	18"	.13	2.10	.23	.23	2.95	.32	.34	3.79	.41			
21/2"	24"	.15	2.89	.28	.27	4.10	.39	.40	5.30	.50			
31/4"	30"	.17	3.66	.33	.33	5.36	.47	.49	7.05	.61			
31/2"	36"	.19	4.57	.38	.37	6.82	.54	.56	9.08	.77			
4"	42"	.20	5.52	.43	.42	8.40	.62	.64	11.28	.81			
4½"	48"	.22	6.64	.48	.47	10.25	.70	.72	13.86	.91			
5½"	54"	.24	7.81	.53	.52	12.24	.78	.81	16.66	1.02			
6"	60"	.26	9.26	.58	.57	14.62	.85	.89	19.99	1.13			
6½"	66"	.28	11.14	.62	.62	17.64	.92	.97	24.14	1.20			
7"	72"	.30	12.66	.65	.67	20.20	.96	1.05	27.73	1.27			
8"	84"	.33	15.99	.70	.77	25.82	1.04	1.21	35.65	1.38			
		T	1	HW - 3145	n		1	n	1				
2"	15"	.12	2.29	.29	.22	3.15	.39	.31	4.02	.49			
2"	18"	.13	2.76	.31	.23	3.80	.42	.34	4.84	.53			
2½"	24"	.15	3.86	.40	.27	5.34	.53	.40	6.81	.67			
31/4"	30"	.17	5.17	.47	.33	7.25	.64	.49	9.32	.81			
31/2"	36"	.19	6.23	.55	.37	9.00	.75	.56	11.76	.95			
4"	42"	.20	7.57	.61	.42	11.10	.84	.64	14.63	1.08			
4½"	48"	.22	9.16	.70	.47	13.58	.97	.72	17.99	1.23			
5½"	54"	.24	10.81	.76	.52	16.23	1.07	.81	21.65	1.37			
6"	60"	.26	12.87	.86	.57	19.44	1.19	.89	26.00	1.53			
6½"	66"	.28	15.56	.93	.62	23.52	1.29	.97	31.49	1.64			
7"	72"	.30	17.71	.97	.67	26.94	1.35	1.05	36.17	1.72			
8"	84"	.33	22.41	1.05	.77	34.44	1.46	1.21	46.47	1.88			
		•	•	•	•	•	•	•	•				


STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR PIPE CULVERT 3:1 SLOPES

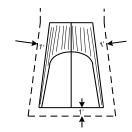
STRUCTURE EXCAVATION (ONE FT. DEPTH)
FOR PIPE CULVERT 4:1 SLOPES

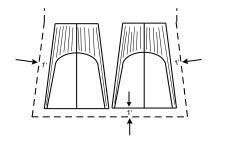
			HW-4100 0° - 15° SKEW									
		S	SINGLE LI	NE	D	OUBLE L	INE	T	RIPLE LIN	JE		
		Cu.Yds.	Cu. Yds.	Cu.Yds.	Cu.Yds	Cu.Yds.	Cu.Yds.	Cu.Yds	Cu.Yds.	Cu.Yds.		
"T"	PIPE	per Ft.	One	One	per Ft.	One	One	per Ft	One	One		
	SIZE	of Pipe	Hdwl.	toe wall	of Pipe	Hdwl.	toe wall	of Pipe	Hdwl.	toe wall		
2"	15"	.12	1.98	.19	.22	2.71	.26	.31	3.45	.33		
2"	18"	.13	2.38	.21	.23	3.27	.29	.34	4.16	.37		
21/2"	24"	.15	3.30	.26	.27	4.59	.35	.40	5.87	.45		
31/4"	30"	.17	4.21	.30	.33	6.04	.42	.49	7.87	.54		
31/2"	36"	.19	5.29	.35	.37	7.74	.49	.56	10.19	.63		
4"	42"	.20	6.40	.39	.42	9.54	.55	.64	12.68	.72		
4½"	48"	.22	7.74	.44	.47	11.70	.63	.72	15.66	.82		
5½"	54"	.24	9.13	.48	.52	14.00	.69	.81	18.88	.91		
6"	60"	.26	10.85	.53	.57	16.78	.76	.89	22.71	1.00		
6½"	66"	.28	13.10	.58	.62	20.32	.82	.97	27.53	1.08		
7"	72"	.30	14.91	.60	.67	23.29	.87	1.05	31.67	1.13		
8"	84"	.33	18.87	.65	.77	31.00	.94	1.21	40.78	1.23		
				HW-4130	30° S	SKEW						
2"	15"	.12	2.32	.23	.22	3.17	.31	.31	4.01	.40		
2"	18"	.13	2.80	.26	.23	3.83	.35	.34	4.86	.44		
2½"	24"	.15	3.94	.33	.27	5.43	.44	.40	6.91	.55		
31/4"	30"	.17	5.05	.38	.33	7.16	.52	.49	9.27	.66		
31/2"	36"	.19	6.38	.44	.37	9.20	.60	.56	12.03	.77		
4"	42"	.20	7.76	.50	.42	11.39	.69	.64	15.02	.88		
4½"	48"	.22	9.41	.56	.47	13.98	.77	.72	18.55	.98		
51/2"	54"	.24	11.12	.62	.52	16.75	.87	.81	22.38	1.11		
6"	60"	.26	13.27	.68	.57	20.11	.95	.89	26.97	1.23		
6½"	66"	.28	16.07	.74	.62	24.40	1.04	.97	32.74	1.33		
7"	72"	.30	18.30	.77	.67	27.97	1.08	1.05	37.66	1.39		
8"	84"	.33	23.20	.83	.77	35.85	1.17	1.21	48.51	1.51		
				HW-4145	45° S	SKEW						
2"	15"	.12	3.10	.35	.22	4.14	.45	.31	5.18	.55		
2"	18"	.13	3.80	.40	.23	5.06	.51	.34	6.33	.62		
21/2"	24"	.15	5.42	.50	.27	7.24	.63	.40	9.06	.77		
31/4"	30"	.17	7.02	.59	.33	9.60	.76	.49	12.18	.93		
31/2"	36"	.19	8.95	.68	.37	12.41	.88	.56	15.87	1.08		
4"	42"	.20	10.93	.77	.42	15.38	1.00	.64	19.82	1.24		
4½"	48"	.22	13.34	.86	.47	18.94	1.13	.72	24.53	1.39		
5½"	54"	.24	15.81	.95	.52	22.70	1.25	.81	29.60	1.55		
6"	60"	.26	18.94	1.06	.57	27.32	1.39	.89	35.71	1.73		
6½"	66"	.28	23.05	1.15	.62	33.25	1.51	.97	43.46	1.86		
7"	72"	.30	26.28	1.21	.67	38.13	1.59	1.05	49.97	1.96		
8"	84"	.33	33.38	1.28	.77	48.87	1.69	1.21	64.36	2.11		

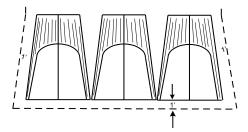
Mississippi Department of Transportation

Construction Manual

SKETCH SHOWING LIMITS FOR STRUCTURE EXCAVATION FOR FLARED END PIPE


STRUCTURE EXCAVATION (ONE FOOT DEPTH) FOR FLARED END CULVERT PIPE FE 1


Round	l-Pipe	5	Single Lin	e	Γ	Double Lin	e		Triple Lin	e
	"T"	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.
Size	of	Per	Per Ft.	per	Double	Per Ft.	per	Triple	Per Ft.	Per
	Pipe	FES	Bbl.	Toewall	FES	Bbl.	Toewall	FES	Bbl.	Toewall
15	.19	1.04	.12	.06	1.84	.23	.11	2.64	.35	.17
18	.21	1.11	.13	.06	2.01	.26	.13	2.91	.38	.19
24	.25	1.33	.15	.08	2.52	.31	.17	3.72	.48	.25
30	.29	1.53	.17	.10	3.01	.37	.21	4.49	.58	.31
36	.33	2.21	.19	.12	4.47	.43	.25	6.73	.68	.37
42	.38	2.38	.20	.13	4.84	.47	.27	7.31	.74	.40
48	.42	2.55	.22	.15	5.21	.51	.29	7.87	.80	.44
54	.46	2.76	.24	.16	5.67	.55	.31	8.59	.86	.47
60	.50	2.94	.26	.17	6.05	.59	.33	9.16	.93	.50
66	.54	3.11	.28	.18	6.42	.63	.35	9.73	.99	.53
72	.58	3.28	.30	.19	6.79	.67	.38	10.30	1.05	.56

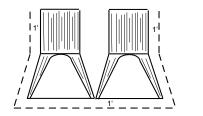

NOTE: Quantities for End Section <u>DO NOT</u> include toe wall. The quantities shown in Table 5 are correct and will be used on the final estimate as the basis of payment unless authorized modifications are made.

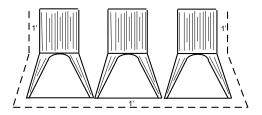
Mississippi Department of Transportation

Construction Manual

SKETCH SHOWING LIMITS FOR STRUCTURE EXCAVATION FOR FLARED END PIPE.

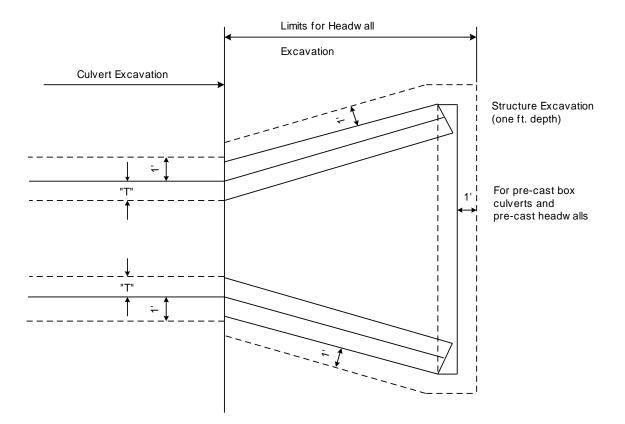
STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR FLARED END ARCH PIPE - FE-1A Type 1


		S	Single Lin	e	Double Line			Triple Line			
	"T"	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	
Size	of	Per	Per Ft.	per	Double	Per Ft.	per	Triple	Per Ft.	Per	
	FES	FES	Bbl.	Toewall	FES	Bbl.	Toewall	FES	Bbl.	Toewall	
22 x 13	.21	1.14	.14	.06	2.03	.27	.13	2.92	.40	.19	
29 x 19	.25	1.35	.16	.08	2.52	.33	.17	3.68	.50	.25	
36 x 23	.29	1.56	.19	.10	3.00	.39	.21	4.45	.60	.31	
44 x 27	.33	2.28	.21	.12	4.50	.46	.25	6.72	.70	.37	
51 x 31	.38	2.46	.23	.13	4.88	.50	.27	7.30	.77	.40	
58 x 36	.42	2.64	.25	.15	5.25	.54	.29	7.87	.83	.44	
65 x 40	.46	2.82	.27	.16	5.63	.59	.31	8.43	.90	.47	
73 x 45	.50	3.01	.30	.17	6.01	.63	.33	9.01	.97	.50	
88 x 54	.58	3.69	.35	.21	7.54	.76	.41	11.40	1.17	.62	


Note: Quantities for End Section <u>DO NOT</u> include toe wall.

The quantities shown in Table 6 are correct and will be used on the final estimate as the basis of payment unless authorized modifications are made.

Construction Manual


SKETCH SHOWING LIMITS FOR STRUCTURE EXCAVATION FOR FLARED END PIPE.

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR FLARED END ARCH PIPE - FE-1A Type II

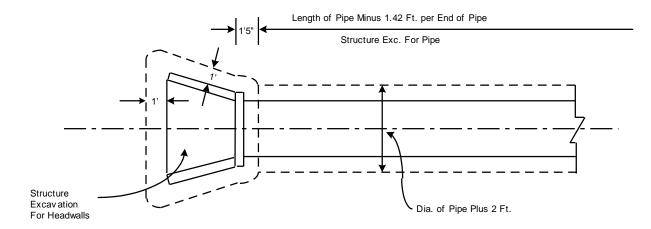
		Single Line			Γ	Double Line			Triple Line		
	"T"	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.P	Cu.Yds.	
Size	of	Per	Per Ft.	per	Double	Per Ft.	per	Triple	er Ft.	Per	
	FES	FES	Bbl.	Toewall	FES	Bbl.	Toewall	FES	Bbl.	Toewall	
22 x 13	.21	1.06	.14	.06	1.95	.27	.13	2.84	.40	.19	
29 x 19	29	1.28	.16	.08	2.47	.33	.17	3.67	.50	.25	
36 x 23	.33	1.87	.19	.10	3.76	.39	.21	5.66	.60	.31	
44 x 27	.38	2.16	.21	.13	4.42	.46	.25	6.68	.71	.38	
51 x 31	.38	2.34	.23	.13	4.77	.50	.27	7.20	.77	.40	
58 x 36	.42	2.53	.25	.15	5.15	.54	.29	7.78	.83	.44	
65 x 40	.46	2.72	.27	.16	5.54	.59	.31	8.36	.90	.47	
73 x 45	.50	2.92	.30	.17	5.94	.63	.33	8.95	.97	.50	

Note: Quantities for End Section <u>DO NOT</u> include toe wall. The quantities shown in Table 6a are correct and will be used on the final estimate as the basis of payment unless authorized modifications are made.

TABLE 6A

SKETCH SHOWING LIMITS FOR STRUCTURE EXCAVATION FOR PRE-CAST BOX CULVERTS AND PRE-CAST HEADWALLS

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR PRE-CAST BOX CULVERTS AND PRE-CAST HEADWALLS

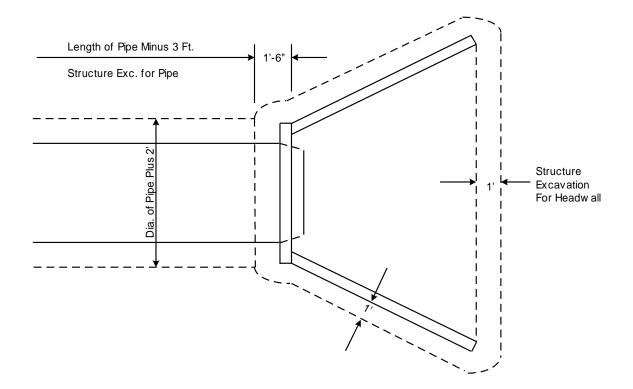

TOK	I KL-CASI DOA C	UL VERTS AND I K	L-CASI IILADWA	LLS	
Size	"T" of	Cu.Yds. Per	Cu.Yds. Per	Cu. Yds. per	
	Box	Ft. of Bbl.	Headwall	Toewall	
6 x 4	8"	0.35	5.06	0.25	
8 x 4	8"	0.42	5.73	0.28	
10 x 4	10"	0.51	6.40	0.32	
6 x 5	8"	0.35	5.06	0.25	
8 x 5	8"	0.42	5.73	0.28	
10 x 5	10"	0.51	6.40	0.32	
6 x 6	8"	0.35	8.03	0.30	
8 x 6	8"	0.42	9.00	0.33	
10 x 6	10"	0.51	9.96	0.36	
8 x 8	8"	0.42	12.70	0.38	
10 x 8	10"	0.51	13.95	0.41	
	1		1 ' 0		

NOTE: Quantities shown are correct and will be used as basis for payment unless authorized modifications are made.

The deductions shown below were determined similarly to those for round pipes in Table 1.

DEDUCTION EACH END FOR SKEWED ARCH PIPE CULVERTS (WITH HEADWALLS)

SIZE	0°SKEW	15° SKEW	30° SKEW
22 X 13	1.42	1.77	2.29
29 X 19	1.42	1.86	2.47
36 X 23	1.42	1.95	2.67
44 X 27	1.42	2.05	2.80
51 X 31	1.42	2.14	3.08
58 X 36	1.42	2.24	3.29
65 X 40	1.42	2.32	3.48
73 X 45	1.42	2.42	3.69
88 X 54	1.42	2.61	4.08

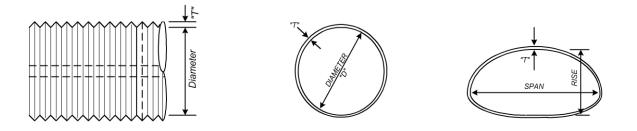

STRUCTURE EXCAVATION (ONE FT. DEPTH) CONCRETE ARCH PIPE CULVERT

	SINGLE LINE		DOUBLE LINE			TRIPLE LINE			
	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.
PIPE SIZE	Per Ft.	One	One	Per Ft.	One	One	Per Ft.	One	One
	of Pipe	Hdwl.	toe wall	of Pipe	Hwdl.	toe wall	of Pipe	Hwdl	toe wall
	STANDARD - 2:1 SLOPES HWA 2100								
22" x 13"	0.14	1.28	0.18	0.26	1.87	0.28	0.38	2.46	0.37
29" x 19"	0.16	1.66	0.23	0.31	2.47	0.34	0.45	3.29	0.46
36" x 23"	0.19	2.05	0.26	0.35	3.08	0.40	0.52	4.10	0.53
44" x 27"	0.21	2.52	0.30	0.42	3.90	0.47	0.62	5.28	0.63
51" x 31"	0.23	2.98	0.34	0.46	4.64	0.52	0.69	6.30	0.71
58" x 36"	0.25	3.57	0.38	0.52	5.66	0.60	0.78	7.75	0.81
65" x 40"	0.27	4.09	0.42	0.57	6.58	0.66	0.87	9.07	0.89
73" x 45"	0.30	4.80	0.46	0.64	7.82	0.73	0.97	10.857	1.00
88" x 54"	0.35	6.14	0.54	0.74	10.16	0.86	1.14	14.17	1.17
	STANDARD - 4:1 SLOPES HWA 4100								
22" x 13"	0.14	1.88	0.20	0.26	2.73	0.30	0.38	3.57	0.39
29" x 19"	0.16	2.76	0.26	0.31	4.01	0.37	0.45	5.27	0.48
36" x 23"	0.19	3.31	0.29	0.35	4.90	0.42	0.52	6.46	0.56
44" x 27"	0.21	4.13	0.34	0.42	6.29	0.50	0.62	8.45	0.66
51" x 31"	0.23	5.06	0.38	0.46	7.75	0.56	0.69	10.44	0.75
58" x 36"	0.25	6.19	0.43	0.52	9.64	0.64	0.78	13.09	0.85
65" x 40"	0.27	7.26	0.47	0.57	11.46	0.71	0.87	15.67	0.95
73" x 45"	0.30	8.64	0.52	0.64	13.81	0.79	0.97	18.97	1.05
88" x 54"	0.35	11.42	0.61	0.74	18.42	0.92	1.14	25.44	1.24

		NGLE LN		DOUBLE LINE					
	Cu.Yds	Cu.Yds	Cu.Yds	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.	Cu.Yds.
PIPE SIZE	Per Ft.	One	One	Per Ft.	One	One	Per Ft.	One	One
	of Pipe	Hdwl.	toe wall	of Pipe	Hwdl.	toe wall	of Pipe	Hwdl	toe wall
	30° SKEW - 2:1 SLOPES HWA 2130								
22" x 13"	0.14	1.34	0.19	0.26	2.02	0.30			
29" x 19"	0.16	1.71	0.23	0.31	2.63	0.36			
36" x 23"	0.19	2.14	0.27	0.35	3.33	0.42			
44" x 27"	0.21	2.64	0.31	0.42	4.24	0.50			
51" x 31"	0.23	3.12	0.35	0.46	4.99	0.56			
58" x 36"	0.25	3.75	0.39	0.52	6.17	0.63			
65" x 40"	0.27	4.31	0.43	0.57	7.20	0.70			
73" X 45"	0.30	5.05	0.47	0.64	8.55	0.78			
88" X 54"	0.35	6.46	0.55	0.74	11.09	0.91			
			30° SKEV	W - 4:1 SL	OPES HWA	A 4130			
22" x 13"	0.14	2.19	0.25	0.26	3.17	0.36			
29" x 19"	0.16	3.26	0.32	0.31	4.71	0.45			
36" x 23"	0.19	3.92	0.36	0.35	5.76	0.52			
44" x 27"	0.21	4.91	0.42	0.42	7.41	0.61			
51" x 31"	0.23	6.05	0.48	0.46	9.16	0.69			
58" x 36"	0.25	7.43	0.54	0.52	11.41	0.78			
65" x 40"	0.27	8.74	0.59	0.57	13.59	0.87			
73" x 45"	0.30	10.43	0.66	0.64	16.39	0.96			
88" x 54	0.35	13.83	0.77	0.74	21.93	1.13			

STRUCTURE EXCAV. (ONE FT. DEPTH) CONC. ARCH PIPE CULVERT CONTINUED:

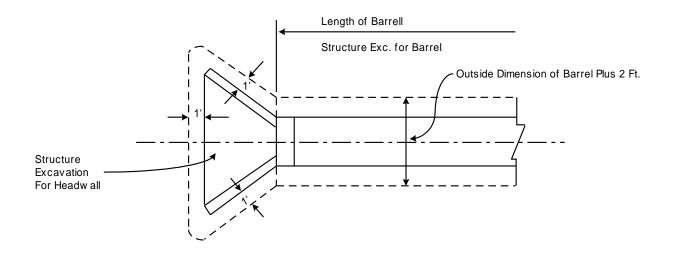
- NOTE: The quantities shown in Table are correct and will be used unless authorized modifications are made.
- EXAMPLE: 48' of 36" X 23" Single Line Culvert. From field observations, the average cut to flow line is as follows:
 Pipe 1.3 Ft., Upstream Headwall 1.7 Ft., Downstream Headwall 1.6 Ft.
 From Table: Structure Excavation = (48 2.84)0.19+1.59 + (2.05 x 2.57) + (2.05 + 2.47) + (2 x 0.26) = 24.49 C.Y.
 Pay 24.5 Cu. Yds.


SKETCH SHOWING LIMITS FOR STRUCTURE EXCAVATION FOR PIPE CATTLE PASS

STRUCTURE EXCAVATION FOR REINFORCED CONCRETE PIPE CATTLE PASS (ONE FT. DEPTH)

PIPE	CU.YDS.	CU.YDS.	CU.YDS.				
SIZE	per Ft.	One	One				
	of Pipe	Headwall	Toewall				
48" x 72"	.22	6.49	.48	CP-1			
		30° SKEW					
48" X 72"	.22	6.57	.47	CP-1S			

2:1 Slope


NOTE: The quantities shown in Table are correct and will be used unless authorized modifications are made.

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR CORRUGATED STEEL PIPE AND F. E. S.

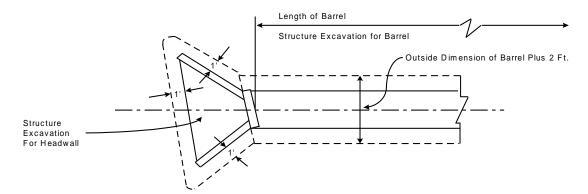
S	INGLE LINI	E (STD. PIPE	E)	SI	NGLE LINE	(ARCH PIP	E)			
PIPE	"T"	CU.YD.	CU.YD.	PIPE	"T"	CU.YD.	CU.YD.			
SIZE		PER FT.	PER	SIZE		PER FT.	PER			
(IN.)	(FT.)	OF PIPE	F.E.S.	(IN.)	(FT.)	OF PIPE	F.E.S.			
15	0.04	0.12	0.52	18x11	0.04	0.13	0.44			
18	0.04	0.13	0.65	22x13	0.04	0.14	0.54			
24	0.04	0.15	0.95	25x16	0.04	0.15	0.67			
30	0.04	0.17	1.31	29x18	0.04	0.16	0.81			
36	0.08	0.19	1.70	36x22	0.08	0.19	1.07			
42	0.08	0.20	2.15	43x27	0.08	0.21	1.42			
48	0.08	0.22	2.57	50x31	0.08	0.23	1.75			
54	0.08	0.24	2.96	58x36	0.08	0.25	2.24			
60	0.08	0.26	3.28	65x40	0.08	0.27	2.65			
66	0.08	0.28	3.44	72x44	0.08	0.30	3.09			
72	0.08	0.30	3.59	79x49	0.08	0.32	3.31			
78	0.08	0.31	3.74	85x54	0.08	0.34	3.51			
84	0.08	0.33	3.90							

NOTE: If Corrugated Steel Structural Plate Pipe (not to be confused with the above pipe) is used, Structure Excavation will be determined using "T" as "4" regardless of pipe size, which starts at 60" and may be as large as 252" for round pipe and starting at 6'-1" x 4'-7" to as large as 20'-7" x 13'-2" for arch pipe.

SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS 2:1 SLOPE

		BS-2					BS-3			
		Cu.Yds.	Cu.Yds.	Cu.Yds.			Cu. Yds.	Cu.Yds.	Cu.Yds.	
SIZE	"T"	per Ft.	One	(1)	SIZE	"T"	per Ft.	One	(1)	
		of Bbl.	Hdwl.	Const.			of Bbl.	Hdwl.	Const.	
2 x 2	6"	0.19	1.46	0.20	3 x 3	6½"	0.22	2.49	0.28	
3 x 2	6½"	0.22	1.65	0.23	4 x 3	7	0.26	2.74	0.31	
4 x 2	7"	0.26	1.84	0.25	5 x 3	7½"	0.30	2.99	0.34	
5 x 2	7½"	0.30	2.03	0.28	6 x 3	8"	0.34	3.24	0.36	
6 x 2	8"	0.33	2.22	0.31	7 x 3	8"	0.37	3.49	0.39	
7 x 2	8"	0.37	2.40	0.34	8 x 3	8½"	0.41	3.74	0.42	
8 x 2	8"	0.42	2.59	0.37	9 x 3	9"	0.45	3.99	0.45	
	IBS	-4-2W & B	8S-4		IBS-5-2W & BS-5					
4 x 4	6½"	0.26	3.71	0.36	5 x 5	7"	0.30	4.95	0.43	
5 x4	71/2"	0.30	4.02	0.39	6 x 5	7½"	0.34	5.31	0.46	
6 x4	71/2"	0.34	4.33	0.42	7 x5	8"	0.38	5.67	0.49	
7 x 4	8"	0.37	4.65	0.44	8 x 5	8½"	0.41	6.04	0.51	
8 x 4	81/2"	0.41	4.96	0.47	9 x 5	9"	0.45	6.40	0.54	
9 x 4	9"	0.45	5.27	0.50	10 x 5	9½"	0.49	6.76	0.57	
10 x 4	9½"	0.48	5.58	0.53	12 x 5	10	0.56	7.48	0.63	


<u>STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD</u> AND BS & BD SERIES BOX CULVERTS - CONTINUED: 2:1 SLOPE

	IBS	5-6-2W & B	S-6			IBS	-8-2W & B	8S-8	
		Cu. Yds.	Cu.Yds.	Cu.Yds.			Cu.Yds.	Cu.Yds.	Cu.Yds.
SIZE	"T"	per Ft.	One	(1)	SIZE	"T"	per Ft.	One	(1)
		of Bbl.	Hdwl.	Const.			of Bbl.	Hdwl.	Const.
4 x 6	7"	0.27	6.54	0.45	8 x 8	9"	0.42	11.79	1.07
6 x 6	71⁄2"	0.34	7.46	0.51	10 x 8	9½"	0.49	12.94	1.25
8 x 6	81/2"	0.42	8.37	0.56	12 x 8	10½"	0.57	14.09	1.45
10 x 6	9½"	0.49	9.28	0.61	14 x 8	1'0"	0.64	15.24	1.69
12 x 6	10½"	0.57	10.19	0.66	16 x 8	1'1"	0.72	16.39	1.92
14 x 6	1'0"	0.65	11.10	0.72	18 x 8	1'2"	0.79	17.55	2.17
16 x 6	1"1"	0.73	12.01	0.77	20 x 8	1'3"	0.90	18.69	2.43
18 x 6	1'2"	0.81	12.92	0.82					
20 x 6	1'3"	0.90	13.83	0.87					
		10-2W & B	S-10			IBS-	12-2W & E	BS-12	
10 x 10	10"	0.51	15.60	3.72	12 x 12	111/2"	0.59	20.58	5.34
12 x 10	11"	0.58	16.90	3.94	14 x 12	1'0"	0.66	22.07	5.56
14 x 10	1'0"	0.65	18.21	4.17	16 x 12	1'1"	0.73	23.56	5.82
16 x 10	1'1"	0.73	19.51	4.43	18 x 12	1'2"	0.81	25.05	6.09
18 x 10	1'2"	0.81	20.81	4.70	20 x 12	1'3"	0.90	26.54	6.37
20 x 10	1'3"	0.91	22.11	4.99	22 x 12	1'4½"	0.98	28.03	6.72
22 x 10	1'4½"	0.98	23.42	5.33	24 x 12	1'6"	1.06	29.52	7.04
		- 4-2W & B	D-4			IBD	-5-2W & E	BD-5	
8 x 4	7"	0.43	5.11	0.48	10 x 5	7½"	0.50	6.94	0.58
10 x 4	71⁄2"	0.50	5.74	0.54	12 x 5	8"	0.58	7.67	0.64
12 x 4	8"	0.57	6.36	0.60	16 x 5	9"	0.73	9.12	0.75
16 x 4	9"	0.73	7.60	0.71	20 x 5	10"	0.88	10.58	0.87
20 x 4	10"	0.88	8.88	0.82	24 x 5	111/2"	1.03	12.04	1.00
24 x 4	111/2"	1.03	10.13	0.93	28 x 5	1'1"	1.19	13.50	1.09
		9-6-2W & B					-8-2W & E		
12 x 6	81/2"	0.58	10.43	0.69	16 x 8	10"	0.74	16.77	1.78
16 x 6	9½"	0.74	12.27	0.79	20 x 8	11"	0.92	19.10	2.17
20 x 6	10"	0.88	14.09	0.90	24 x 8	1'0½"	1.05	21.42	2.63
24 x 6	111/2"	1.03	15.91	1.00	28 x 8	1'1½"	1.19	23.72	3.06
28 x 6	1'1"	1.19	17.77	1.11	32 x 8	1'2½"	1.35	26.04	3.54
32 x 6	1'2½	1.34	19.61	1.21					
		10-2W & B					12 2W & B		
20 x 10	111/2"	0.90	22.63	4.79	24 x 12	1'1"	1.07	30.20	6.66
24 x 10	1'0½"	1.05	25.23	5.25	28 x 12	1'2"	1.21	33.18	7.15
28 x 10	1'1½"	1.20	27.87	5.75	32 x 12	1'3½"	1.37	36.20	7.74
32 x 10	1'3"	1.36	30.50	6.32	36 x 12	1'5"	1.52	39.21	8.35
36 x 10	1'4½"	1.51	33.16	6.93	40 x 12	1'6"	1.67	42.20	8.93

Table 20 - Continued:

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR STATE STANDARD IBS AND IBD AND BS & BD SERIES BOX CULVERTS - CONTINUED: 2:1 SLOPE

- (1) NOTE: The constant quantity includes the toe wall in all instances, the auxiliary slab under end of barrel, and thickened apron where applicable.
 - NOTE: The quantities shown in the above table are correct and will be used on the final estimate as the basis of payment, unless authorized modifications are made.
- EXAMPLE: 33.5' of 8' X 6' Box Culvert (St. Std. BS-6). From Field Observations the average cut to flow line is as follows:
 Barrel 1.7 Ft., Upstream Headwall 1.9 Ft., Downstream Headwall 1.3 Ft. From Table: Structure Excavation=(33.5 x 0.42 x 2.41)+(8.37 x 2.48)+(8.37x1.88)+(0.56 x 2) = 71.53 Cu.Yds. Pay 71.5 Cu.Yds.

SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD and BS & BD SERIES BOX CULVERTS - 15° SKEW (2:1 Slope) FOR STANDARD ISK-15-2W FOR IBS & IBD SERIES

	BS	5-2			BS	5-3	
	Cu.Yds.	Cu.Yds.	Cu.Yds.		Cu.Yds.	Cu.Yds.	Cu.Yds.
	per Ft.	One	(1)		per Ft.	One	(1)
SIZE	of Barrel	Headwall	Constant	SIZE	of Barrel	Headwall	Constant
2 x2	0.19	1.47	0.20	3 x 3	0.22	2.51	0.30
3 x 2	0.22	1.65	0.22	4 x 3	0.26	2.76	0.33
4 x 2	0.26	1.84	0.25	5 x 3	0.30	3.01	0.36
5 x 2	0.30	2.02	0.28	6 x 3	0.34	3.26	0.38
6 x 2	0.33	2.21	0.31	7 x 3	0.37	3.51	0.41
7 x 2	0.37	2.39	0.34	8 x 3	0.41	3.76	0.44
8 x 2	0.42	2.58	0.37	9 x 3	0.45	4.01	0.47
	BS	5-4			BS	5-5	
4 x 4	0.26	3.80	0.39	5 x 5	0.30	5.09	0.46
5 x 4	0.30	4.11	0.41	6 x 5	0.34	5.45	0.49
6 x 4	0.34	4.42	0.44	7 x 5	0.38	5.81	0.52
7 x 4	0.37	4.73	0.47	8 x 5	0.41	6.18	0.55
8 x 4	0.41	5.05	0.50	9 x 5	0.45	6.54	0.58
9 x 4	0.45	5.36	0.53	10 x 5	0.49	6.91	0.60
10 x 4	0.48	5.68	0.56	12 x 5	0.56	7.64	0.66
	BS	5-6			BS	5-8	
4 x 6	0.27	6.76	0.50	8 x 8	0.42	12.14	1.17
6 x 6	0.34	7.68	0.55	10 x 8	0.49	13.30	1.35
8 x 6	0.42	8.60	0.60	12 x 8	0.57	14.47	1.56
10 x 6	0.49	9.52	0.66	14 x 8	0.64	15.63	1.81
12 x 6	0.57	10.44	0.71	16 x 8	0.72	16.79	2.10
14 x 6	0.65	11.36	0.77	18 x 8	0.79	17.96	2.30
16 x 6	0.73	12.28	0.82	20 x 8	0.90	19.12	2.56
18 x 6	0.81	13.20	0.88				
20 x 6	0.90	14.12	0.93				

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES

BOX CULVERTS - 15° SKEW - CONTINUED: ((2:1 Slope)	

	Cu.Yds.	Cu.Yds.	Cu.Yds.		Cu.Yds.	Cu.Yds.	Cu.Yds.		
SIZE	per Ft.	One	(1)		per Ft.	One	(1)		
	of Barrel	Headwall	Constant	SIZE	of Barrel	Headwall	Constant		
	BS	-10				BS-12			
10 x 10	0.51	16.03	3.79	12 x 12	0.59	21.15	5.56		
12 x 10	0.58	17.34	4.02	14 x 12	0.66	22.66	5.78		
14 x 10	0.65	18.66	4.26	16 x 12	0.73	24.17	6.04		
16 x 10	0.73	19.97	4.53	18 x 12	0.81	25.67	6.31		
18 x 10	0.81	21.29	4.81	20 x 12	0.90	27.18	6.60		
20 x 10	0.91	22.61	5.10	22 x 12	0.98	28.69	6.94		
22 x 10	0.98	23.92	5.44	24 x 12	1.06	30.20	7.31		
	BI) -4				BD-5	•		
8 x 4	0.43	5.21	0.51	10 x 5	0.50	7.09	0.62		
10 x 4	0.50	5.83	0.57	12 x 5	0.58	7.83	0.68		
12 x 4	0.57	6.46	0.63	16 x 5	0.73	9.29	0.79		
16 x 4	0.73	7.72	0.75	20 x 5	0.88	10.76	0.91		
20 x 4	0.88	8.99	0.86	24 x 5	1.03	12.23	1.02		
24 x 4	1.03	10.24	0.98	28 x 5	1.19	13.71	1.14		
	BI	D- 6		BD-8					
12 x 6	0.58	10.71	0.73	16 x 8	0.74	17.18	1.90		
16 x 6	0.74	12.57	0.84	20 x 8	0.92	19.53	2.30		
20 x 6	0.88	14.41	0.95	24 x 8	1.05	21.88	2.78		
24 x 6	1.03	16.25	1.06	28 x 8	1.19	24.21	3.23		
28 x 6	1.19	18.12	1.17	32 x 8	1.35	26.56	3.71		
32 x 6	1.34	19.98	1.28						
	BD	-10				BD-12	•		
20 x 10	0.90	23.13	4.90	24 x 12	1.07	30.89	6.95		
24 x 10	1.05	25.76	5.37	28 x 12	1.21	33.90	7.46		
28 x 10	1.20	28.38	5.88	32 x 12	1.37	36.95	8.05		
32 x 10	1.36	31.08	6.47	36 x 12	1.52	40.00	8.69		
36 x 10	1.51	33.77	7.11	40 x 12	1.67	43.01	9.29		


(1) NOTE: The constant quantity includes the tow wall in all instances, the auxiliary slab under end of barrel and thickened apron where applicable.

NOTE: The quantities shown are correct and will be used on the final estimate as the basis of payment, unless authorized modifications are made.

EXAMPLE: 37.8' of 20' X 5' Box Culvert (St. Std. BD-5). From Field Observations the average cut to flow line is as follows:

Barrel 1.9 Ft., Upstream Headwall 2.1 Ft., Downstream Headwall 1.5 Ft. From Table: Structure Excavation = (37.8 x 0.88 x 2.73)+(10.76 x 2.60)+ (10.76 x 2.00)+(0.91x2) = 142.14 Cu.Yds. Pay 142.1 Cu.Yds.

Table 21 - Continued:

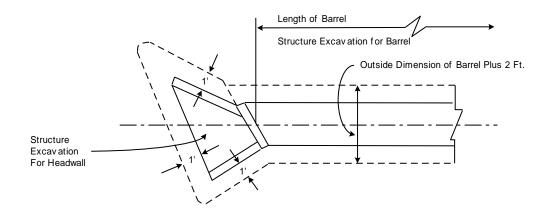
SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD and BS & BD SERIES BOX CULVERTS - 30° SKEW (2:1 Slope) FOR STANDARD ISK-30-2W FOR IBS & IBD SERIES

	Cu.Yds.	Cu.Yds.	Cu.Yds.		Cu.Yds.	Cu.Yds.	Cu.Yds.	
	per Ft.	One	(1)		per Ft.	One	(1)	
SIZE	of Barrel	Headwall	Constant	SIZE	of Barrel	Headwall	Constant	
	BS	8-2		BS-3				
2 x2	0.19	1.45	0.20	3 x 3	0.22	2.44	0.27	
3 x 2	0.22	1.65	0.23	4 x 3	0.26	2.72	0.31	
4 x 2	0.26	1.86	0.26	5 x 3	0.30	2.99	0.34	
5 x 2	0.30	2.07	0.29	6 x 3	0.34	3.27	0.37	
6 x 2	0.33	2.27	0.32	7 x 3	0.37	3.55	0.40	
7 x 2	0.37	2.48	0.36	8 x 3	0.41	3.83	0.44	
8 x 2	0.42	2.68	0.39	9 x 3	0.45	4.10	0.47	
	BS	5-4			BS	5-5		
4 x 4	0.26	3.67	0.35	5 x 5	0.30	4.92	0.42	
5 x 4	0.30	4.02	0.39	6 x 5	0.34	5.33	0.45	
6 x 4	0.34	4.37	0.42	7 x 5	0.38	5.73	0.49	
7 x 4	0.37	4.72	0.45	8 x 5	0.41	6.14	0.52	
8 x 4	0.41	5.07	0.48	9 x 5	0.45	6.55	0.55	
9 x 4	0.45	5.42	0.51	10 x 5	0.49	6.95	0.58	
10 x 4	0.48	5.77	0.55	12 x 5	0.56	7.76	0.65	
	BS	5-6			BS	5-8		
4 x 6	0.27	6.35	0.44	8 x 8	0.42	11.68	1.20	
6 x 6	0.34	7.38	0.50	10 x 8	0.49	12.97	1.40	
8 x 6	0.42	8.41	0.56	12 x 8	0.57	14.27	1.63	
10 x 6	0.49	9.43	0.62	14 x 8	0.64	15.56	1.90	
12 x 6	0.57	10.46	0.68	16 x 8	0.72	16.86	2.17	
14 x 6	0.65	11.48	0.74	18 x 8	0.79	18.16	2.45	
16 x 6	0.73	12.51	0.80	20 x 8	0.90	19.45	2.75	
18 x 6	0.81	13.54	0.86					
20 x 6	0.90	14.56	0.92					

STRUCTURE EXCAVATION (ONE FT DEPTH) FOR IBS & IBD AND BS & BD SERIES

BOX CULVERTS - 30° SKEW - CONTINUED: (2:1 Slope)


	Cu.Yds.	Cu.Yds.	Cu.Yds.	I	Cu.Yds.	Cu.Yds.	Cu.Yds.	
SIZE	per Ft.	One One	(1)	SIZE	per Ft.	One	(1)	
SILL	of Barrel	Headwall	Constant	SILL	of Barrel	Headwall	Constant	
		-10	Constant		BS-12			
10 x 10	0.51	15.50	3.79	12 x 12	0.59	20.48	5.55	
12 x 10	0.58	16.97	4.04	14 x 12	0.66	22.16	5.79	
14 x 10	0.65	18.43	4.31	16 x 12	0.73	23.84	6.08	
16 x 10	0.73	19.90	4.61	18 x 12	0.81	25.52	6.39	
18 x 10	0.81	21.37	4.92	20 x 12	0.90	27.20	6.71	
20 x 10	0.91	22.84	5.25	22 x 12	0.98	28.88	7.05	
22 x 10	0.98	24.30	5.62	24 x 12	1.06	30.57	7.50	
	BI) -4			B	D-5		
8 x 4	0.43	5.25	0.50	10 x 5	0.50	7.16	0.60	
10 x 4	0.50	5.94	0.56	12 x 5	0.58	7.98	0.67	
12 x 4	0.57	6.64	0.63	16 x 5	0.73	9.61	0.79	
16 x 4	0.73	8.05	0.76	20 x 5	0.88	11.25	0.92	
20 x 4	0.88	9.46	0.88	24 x 5	1.03	12.89	1.05	
24 x 4	1.03	10.86	1.01	28 x 5	1.19	14.53	1.18	
)- 6		BD-8				
12 x 6	0.58	10.76	0.70	16 x 8	0.74	17.29	2.01	
16 x 6	0.74	12.83	0.82	20 x 8	0.92	19.91	2.46	
20 x 6	0.88	14.88	0.94	24 x 8	1.05	22.53	2.99	
24 x 6	1.03	16.93	1.06	28 x 8	1.19	25.13	3.49	
28 x 6	1.19	19.03	1.19	32 x 8	1.35	27.75	4.03	
32 x 6	1.34	21.10	1.31					
	BD	-10			BI	D- 12		
20 x 10	0.90	23.42	5.02	24 x 12	1.07	31.34	7.06	
24 x 10	1.05	26.35	5.55	28 x 12	1.21	34.70	7.65	
28 x 10	1.20	29.32	6.16	32 x 12	1.37	38.10	8.33	
32 x 10	1.36	32.28	6.78	36 x 12	1.52	41.49	9.04	
36 x 10	1.51	35.28	7.49	40 x 12	1.67	44.86	9.71	

(1) NOTE: The constant quantity includes the toe wall in all instances, the auxiliary slab under end of barrel and thickened apron where applicable.

NOTE: The quantities shown in above table are correct and will be used on the final estimate as the basis of payment, unless authorized modifications are made.

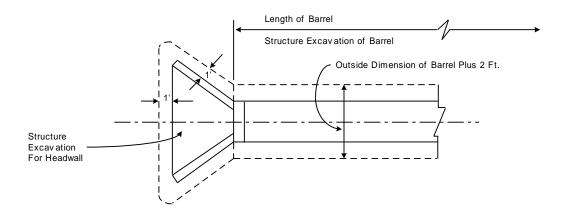
EXAMPLE: 42.4' of 12' X 6' Box Culvert (St. Stds. BS-6 & SK-30). From Field Observations, the average cut to flow line is as follows: Barrel 2.4 Ft., Upstream Headwall 2.6 Ft.; Downstream headwall 1.8 Ft. From Table: Str.Exc.=(42.4x0.57x3.28)+(10.46x3.18)+(10.46x2.38)+(0.68x2)=138.78 C.Y. Pay 138.8 Cu.Yds.

Table 22 - Continued:

STRUCTURE EXCAVATION (ONE FT. DEPTH FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS - 45° SKEW FOR STANDARD ISK-45-2W FOR IBS & IBD SERIES 2:1 SLOPE

	Cu.Yds.	Cu.Yds.	Cu.Yds.		Cu.Yds.	Cu.Yds.	Cu.Yds.	
	per Ft.	One	(1)		per Ft.	One	(1)	
SIZE	of Barrel	Headwall	Constant	SIZE	of Barrel	Headwall	Constant	
	BS	5-2		BS-3				
2 x2	0.19	1.97	0.29	3 x 3	0.22	3.36	0.41	
3 x 2	0.22	2.22	0.33	4 x 3	0.26	3.70	0.45	
4 x 2	0.26	2.47	0.37	5 x 3	0.30	4.04	0.49	
5 x 2	0.30	2.73	0.41	6 x 3	0.34	4.38	0.53	
6 x 2	0.33	2.98	0.45	7 x 3	0.37	4.72	0.57	
7 x 2	0.37	3.23	0.49	8 x 3	0.41	5.06	0.61	
8 x 2	0.42	3.49	0.53	9 x 3	0.45	5.40	0.65	
	IBS &	2 BS-4			IBS &	2 BS-5		
4 x 4	0.26	5.11	0.53	5 x 5	0.30	6.86	0.63	
5 x 4	0.30	5.54	0.57	6 x 5	0.34	7.36	0.67	
6 x 4	0.34	5.96	0.61	7 x 5	0.38	7.86	0.71	
7 x 4	0.37	6.39	0.65	8 x 5	0.41	8.35	0.75	
8 x 4	0.41	6.82	0.69	9 x 5	0.45	8.85	0.79	
9 x 4	0.45	7.25	0.73	10 x 5	0.49	9.35	0.83	
10 x 4	0.48	7.68	0.77	12 x 5	0.56	10.34	0.91	
	IBS &	2 BS-6			IBS &	2 BS-8		
4 x 6	0.27	9.11	0.68	8 x 8	0.42	16.44	1.67	
6 x 6	0.34	10.37	0.75	10 x 8	0.49	18.03	1.91	
8 x 6	0.42	11.63	0.83	12 x 8	0.57	19.62	2.19	
10 x 6	0.49	12.89	0.90	14 x 8	0.64	21.21	2.53	
12 x 6	0.57	14.14	0.98	16 x 8	0.72	22.79	2.86	
14 x 6	0.65	15.41	1.05	18 x 8	0.79	24.38	3.21	
16 x 6	0.73	16.66	1.12	20 x 8	0.90	25.97	3.57	
18 x 6	0.81	17.91	1.20					
20 x 6	0.90	19.17	1.27					

STRUCTURE EXCAV. (ONE FT. DEPTH) FOR IBS &IBD AND BS&BD SERIES BOX CULVERTS - 45° SKEW - CONTINUED: 2:1 SLOPE


	Cu.Yds.	Cu.Yds.	C V1-	1	C- V1	Cu.Yds.	Cu.Yds.	
SIZE		One	Cu.Yds.	SIZE	Cu.Yds.			
SIZE	per Ft. of Barrel	Headwall	(1) Constant	SIZE	per Ft. of Barrel	One Headwall	(1) Constant	
		BS-10	Constant			BS-12	Constant	
10 10			4.02	10 10			7 10	
10 x 10	0.51	21.70	4.93	12 x 12	0.59	28.66	7.19	
12 x 10	0.58	23.50	5.25	14 x 12	0.66	30.72	7.49	
14 x 10	0.65	25.30	5.58	16 x 12	0.73	32.78	7.85	
16 x 10	0.73	27.10	5.94	18 x 12	0.81	34.84	8.23	
18 x 10	0.81	28.89	6.32	20 x 12	0.90	36.90	8.62	
20 x 10	0.91	30.69	6.72	22 x 12	0.98	38.96	9.09	
22 x 10	0.98	32.49	7.19	24 x 12	1.06	41.02	9.58	
	IBD &	2 BD-4			IBD &	& BD-5		
8 x 4	0.43	7.03	0.71	10 x 5	0.50	9.60	0.85	
10 x 4	0.50	7.89	0.78	12 x 5	0.58	10.61	0.93	
12 x 4	0.57	8.74	0.86	16 x 5	0.73	12.60	1.09	
16 x 4	0.73	10.47	1.02	20 x 5	0.88	14.61	1.25	
20 x 4	0.88	12.20	1.18	24 x 5	1.03	16.62	1.40	
24 x 4	1.03	13.91	1.34	28 x 5	1.19	18.64	1.56	
	IBD &	BD-6		IBD & BD-8				
12 x 6	0.58	14.51	1.00	16 x 8	0.74	23.32	2.66	
16 x 6	0.74	17.05	1.15	20 x 8	0.92	26.53	3.21	
20 x 6	0.88	19.56	1.30	24 x 8	1.05	29.74	3.86	
24 x 6	1.03	22.08	1.44	28 x 8	1.19	32.92	4.47	
28 x 6	1.19	24.64	1.60	32 x 8	1.35	36.13	5.14	
32 x 6	1.34	27.18	1.75					
	IBD &	BD-10			IBD &	BD-12		
20 x 10	0.90	31.40	6.44	24 x 12	1.07	41.96	9.09	
24 x 10	1.05	35.00	7.09	28 x 12	1.21	46.08	9.79	
28 x 10	1.20	38.63	7.79	32 x 12	1.37	50.25	10.60	
32 x 10	1.36	42.27	8.60	36 x 12	1.52	54.41	11.48	
36 x 10	1.51	45.94	9.47	40 x 12	1.67	58.53	12.29	

(1) NOTE: The constant quantity includes the toe wall in all instances, the auxiliary slab under end of Barrel and thickened apron where applicable.

NOTE: The quantities shown in above Table are correct and will be used on the final Estimate as the basis of payment, unless authorized modifications are made.

EXAMPLE: 47.2' of 10' x 8' Box Culvert (St. Stds. BS-8 & SK-45). From Field observations the average cut to flow line is as follows: Barrel 2.1 ft., Upstream Headwall 2.4 Ft., Downstream Headwall 1.6 Ft. From Table: Str. Exc.=(47.2x0.49x2.89)+(18.03x3.11)+(18.03x2.31)+(1.91x2) = 168.38 Cu.Yds. Pay 168.4 Cu. Yds.

Table 23 - Continued:

SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

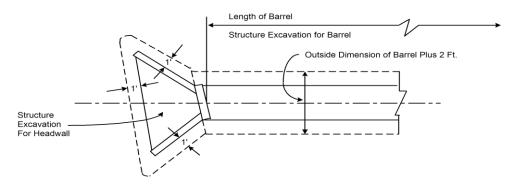
STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD
AND BS & BD SERIES BOX CULVERTS (3:1 SLOPE)
FOR STANDARDS IWS-3 & IWD-3 FOR IBS & IBD SERIES 2:1 SLOPE

<u> </u>	FOR STANDARDS IWS-3 & IWD-3 FOR IBS & IBD SERIES 2:1 SLOPE										
			(1)	(1)				(1)	(1)		
	C.Y.	C.Y.	C.Y.	C.Y.		C.Y.	C.Y.	C.Y.	C.Y.		
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.		
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.		
		BS-4			BS-5						
4 x 4	0.26	5.46	0.36	0.36	5 x 5	0.30	7.26	0.43	0.43		
5 x 4	0.30	5.93	0.39	0.39	6 x 5	0.34	7.81	0.46	0.46		
6 x 4	0.34	6.39	0.42	0.42	7 x 5	0.38	8.35	0.49	0.49		
7 x 4	0.37	6.86	0.45	0.45	8 x 5	0.41	8.89	0.52	0.52		
8 x 4	0.41	7.33	0.48	0.48	9 x 5	0.45	9.44	0.54	0.54		
9 x 4	0.45	7.80	0.50	0.50	10 x 5	0.49	9.98	0.57	0.57		
10 x 4	0.48	8.27	0.53	0.53	12 x 5	0.56	11.07	0.63	0.63		
	IB	S & BS-6			IBS & BS-8						
4 x 6	0.27	9.51	0.46	0.46	8 x 8	0.42	17.15	1.07	1.07		
6 x 6	0.34	10.88	0.51	0.51	10 x 8	0.49	18.87	1.25	1.25		
8 x 6	0.42	12.25	0.56	0.56	12 x 8	0.57	20.59	1.44	1.44		
10 x 6	0.49	13.61	0.61	0.61	14 x 8	0.64	22.31	1.69	1.69		
12 x 6	0.57	14.98	0.67	0.67	16 x 8	0.72	24.04	1.92	1.92		
14 x 6	0.65	16.35	0.72	0.72	18 x 8	0.79	25.76	2.17	2.17		
16 x 6	0.73	17.71	0.77	0.77	20 x 8	0.90	27.48	2.43	2.43		
18 x 6	0.81	19.08	0.82	0.82							
20 x 6	0.90	20.45	0.88	0.88							
	IBS	5 & BS-10				IBV	V & BS-12	2			
10x10	0.51	22.67	4.58	4.58	12x12	0.59	29.88	6.67	6.67		
12x10	0.58	24.62	4.82	4.82	14x12	0.66	32.11	6.89	6.89		
14x10	0.65	26.57	5.06	5.06	16x12	0.73	34.33	7.14	7.14		
16x10	0.73	28.51	5.31	5.31	18x12	0.81	36.56	7.41	7.41		
18x10	0.81	30.46	5.59	5.59	20x12	0.90	38.79	7.69	7.69		
20x10	0.91	32.41	5.88	5.88	22x12	0.98	41.01	8.03	8.03		
22x10	0.98	34.36	6.21	6.21	24x12	1.06	43.24	8.38	8.38		
L				TADI					1		

STRUCTURE EXCAV. (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS (3:1 SLOPE) - CONTINUED:

			(1)	(1)				(1)	(1)		
	C.Y.	C.Y.	(1) C.Y.	(1) C.Y.		C.Y.	C.Y.	(1) C.Y.	(1) C.Y.		
SIZE	L.F.				SIZE	L.F.					
SIZE		One	Const.	Const.	SIZE		One	Const.	Const.		
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.		
		D & BD-4					D & BD-5		I		
8x4	0.43	7.57	0.49	0.49	10x5	0.50	10.25	0.59	0.59		
10x4	0.50	8.51	0.55	0.55	12x5	0.58	11.36	0.64	0.64		
12x4	0.57	9.45	0.60	0.60	16x5	0.73	13.54	0.75	0.75		
16x4	0.73	11.34	0.71	0.71	20x5	0.88	15.73	0.87	0.87		
20x4	0.88	13.24	0.83	0.83	24x5	1.03	17.93	0.98	0.98		
24x4	1.03	15.11	0.94	0.94	28x5	1.19	20.12	1.09	1.09		
	IB	D & BD-6			IBD & BD-8						
12x6	0.58	15.38	0.68	0.68	16x8	0.74	24.61	1.78	1.78		
16x6	0.74	18.14	0.79	0.79	20x8	0.92	28.09	2.17	2.17		
20x6	0.88	20.87	0.89	0.89	24x8	1.05	31.57	2.62	2.62		
24x6	1.03	23.61	1.00	1.00	28x8	1.19	35.01	3.06	3.06		
28x6	1.19	26.40	1.11	1.11	32x8	1.35	38.49	3.53	3.53		
32x6	1.34	29.16	1.21	1.21							
	IBI) & BD-10				IBI) & BD-12				
20x10	0.90	33.18	5.96	5.67	24x12	1.07	44.26	8.35	8.02		
24x10	1.05	37.07	6.41	6.12	28x12	1.21	48.71	8.84	8.51		
28x10	1.20	41.01	6.91	6.62	32x12	1.37	53.21	9.42	9.09		
32x10	1.36	44.94	7.48	7.19	36x12	1.52	57.71	10.04	9.70		
36x10	1.51	48.92	8.10	7.81	40x12	1.67	62.17	10.62	10.28		

(1) NOTE: The constant quantity includes the tow wall in all instances, the auxiliary slab under end of barrel, thickened apron where applicable, and center extension wall thickened apron on upstream headwall.


NOTE: The quantities shown in above table are correct and will be used on the final estimate as the basis of payment, unless authorized modifications are made.

EXAMPLE: 33.5' of 8' x 6' Box Culvert (St. Std. BS-6). From Field Observation the average cut to flow line is as follows: Barrel 1.7 ft., Upstream Headwall 1.9 ft., Downstream Headwall 1.3 Ft. From Table: Str.Exc.=(33.5x0.42x2.41)+(12.25x2.48)+(12.25x1.88)+(0.56x2)
= 88.44 Cu. Yds. Pay 88.4 Cu.Yds.

Table 24 - Continued:

Mississippi Department of Transportation

Construction Manual

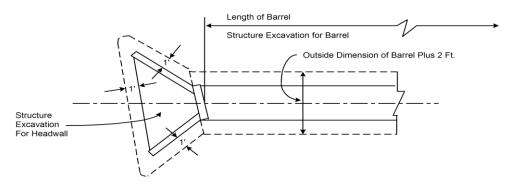
SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS-15°SKEW (3:1 SLOPE) FOR STANDARD ISK-15-3W FOR IBS & IBD SERIES

			(1)	(1)				(1)	(1)
	C.Y.	C.Y.	Ċ.Ý.	Ċ.Ý.		C.Y.	C.Y.	Ċ.Ý.	Ċ.Ý.
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.
		BS-4					BS-5		
4x4	0.26	5.65	0.39	0.39	5x5	0.30	7.54	0.46	0.46
5x4	0.30	6.13	0.42	0.42	6x5	0.34	8.10	0.49	0.49
6x4	0.34	6.61	0.45	0.45	7x5	0.38	8.65	0.52	0.52
7x4	0.37	7.09	0.48	0.48	8x5	0.41	9.21	0.55	0.55
8x4	0.41	7.57	0.50	0.50	9x5	0.45	9.77	0.58	0.58
9x4	0.45	8.05	0.53	0.53	10x5	0.49	10.32	0.61	0.61
10x4	0.48	8.53	0.56	0.56	12x5	0.56	11.43	0.66	0.66
	IB	S & BS-6				IB	S & BS-8		
4x6	0.27	9.91	0.49	0.49	8x8	0.42	17.83	1.16	1.16
6x6	0.34	11.31	0.54	0.54	10x8	0.49	19.59	1.34	1.34
8x6	0.42	12.71	0.60	0.60	12x8	0.57	21.35	1.55	1.55
10x6	0.49	14.11	0.65	0.65	14x8	0.64	23.12	1.80	1.80
12x6	0.57	15.51	0.71	0.71	16x8	0.72	24.88	2.04	2.04
14x6	0.65	16.91	0.76	0.76	18x8	0.79	26.64	2.30	2.30
16x6	0.73	18.31	0.82	0.82	20x8	0.90	28.41	2.57	2.57
18x6	0.81	19.70	0.87	0.87					
20x6	0.90	21.10	0.92	0.92					
	IBS	5 & BS-10				IBS	5 & BS-12		
10x10	0.51	23.53	4.81	4.81	12x12	0.59	31.03	7.00	7.00
12x10	0.58	25.52	5.07	5.07	14x12	0.66	33.31	7.23	7.23
14x10	0.65	27.52	5.31	5.31	16x12	0.73	35.59	7.48	7.48
16x10	0.73	29.51	5.58	5.58	18x12	0.81	37.87	7.75	7.75
18x10	0.81	31.50	5.86	5.86	20x12	0.90	40.15	8.03	8.03
20x10	0.91	33.50	6.16	6.16	22x12	0.98	42.43	8.37	8.37
22x10	0.98	35.49	6.50	6.50	24x12	1.06	44.71	8.72	8.72

15 SKEW (5.1 SEOLE) - CONTINUED.											
			(1)	(1)				(1)	(1)		
	C.Y.	C.Y.	Ċ.Y.	Ċ.Ý.		C.Y.	C.Y.	Ċ.Y.	Ċ.Ý.		
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.		
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.		
	IB	D & BD-4				IB	D & BD-5				
8x4	0.43	7.81	0.52	0.52	10x5	0.50	10.60	0.62	0.62		
10x4	0.50	8.77	0.58	0.58	12x5	0.58	11.73	0.68	0.68		
12x4	0.57	9.73	0.63	0.63	16x5	0.73	13.96	0.79	0.79		
16x4	0.73	11.66	0.75	0.75	20x5	0.88	16.20	0.91	0.91		
20x4	0.88	13.60	0.87	0.87	24x5	1.03	18.45	1.03	1.03		
24x4	1.03	15.52	0.98	0.98	28x5	1.19	20.70	1.14	1.14		
	IB	D & BD-6				IB	D & BD-8				
12x6	0.58	15.92	0.72	0.72	16x8	0.74	25.47	1.89	1.89		
16x6	0.74	18.74	0.83	0.83	20x8	0.92	29.03	2.29	2.29		
20x6	0.88	21.54	0.94	0.94	24x8	1.05	32.59	2.77	2.77		
24x6	1.03	24.34	1.05	1.05	28x8	1.19	36.12	3.22	3.22		
28x6	1.19	27.20	1.16	1.16	32x8	1.35	39.68	3.71	3.71		
32x6	1.34	30.02	1.27	1.27							
	IBL) & BD-10	1			IBI) & BD-12				
20x10	0.90	34.29	6.20	5.91	24x12	1.07	45.76	8.72	8.39		
24x10	1.05	38.27	6.70	6.41	28x12	1.21	50.32	9.24	8.90		
28x10	1.20	42.30	7.21	6.92	32x12	1.37	54.93	9.84	9.50		
32x10	1.36	46.33	7.81	7.52	36x12	1.52	59.54	10.48	10.15		
36x10	1.51	50.40	8.45	8.16	40x12	1.67	64.10	11.08	10.74		

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS AND IBD & BS & BD SERIES BOX CULVERTS 15° SKEW (3:1 SLOPE) - CONTINUED:


(1) NOTE: The auxiliary quantity includes the tow wall in all instances, the auxiliary slab under end of barrel, and thickened apron on upstream headwall.

NOTE: The quantities shown in above table are correct and will be used on the final estimate as the basis of payment unless authorized modifications are made.

EXAMPLE: 46' of 10' x 8' Box Culvert (St.Std.BS-8). From Field Observations the average cut to flow line is as follows:
Barrel 1.8 ft., Upstream Headwall 1.7 ft., Downstream Headwall 1.2 ft.
From Table: Structure Excavation= (46x0.49 x 2.59)+(19.59x1.91)+(1.34x2)
= 145.69 Cu.Yds.
Pay 145.7 Cu.Yds.

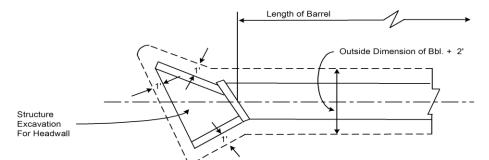
TABLE 25 - Continued:

Mississippi Department of Transportation

SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERT - 30° SKEW (3:1 SLOPE) FOR STANDARD ISK-30-3W FOR IBS & IBD SERIES

			(1)	(1)				(1)	(1)
	C.Y.	C.Y.	Ċ.Ý.	Ċ.Ý.		C.Y.	C.Y.	Ċ.Ý.	Ċ.Ý.
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.
		BS-4					BS-5		
4x4	0.26	6.13	0.42	0.42	5x5	0.30	8.18	0.50	0.50
5x4	0.30	6.67	0.45	0.45	6x5	0.34	8.80	0.53	0.53
6x4	0.34	7.20	0.48	0.48	7x5	0.38	9.42	0.56	0.56
7x4	0.37	7.74	0.51	0.51	8x5	0.41	10.04	0.59	0.59
8x4	0.41	8.27	0.55	0.55	9x5	0.45	10.66	0.62	0.62
9x4	0.45	8.81	0.58	0.58	10x5	0.49	11.28	0.66	0.66
10x4	0.48	9.34	0.61	0.61	12x5	0.56	12.52	0.72	0.72
	IB	S & BS-6				IB	S & BS-8		
4x6	0.27	10.69	0.52	0.52	8x8	0.42	19.34	1.30	1.30
6x6	0.34	12.26	0.58	0.58	10x8	0.49	21.31	1.50	1.50
8x6	0.42	13.82	0.64	0.64	12x8	0.57	23.28	1.73	1.73
10x6	0.49	15.38	0.70	0.70	14x8	0.64	25.25	2.01	2.01
12x6	0.57	16.94	0.77	0.77	16x8	0.72	27.21	2.29	2.29
14x6	0.65	18.50	0.83	0.83	18x8	0.79	29.18	2.57	2.57
16x6	0.73	20.06	0.89	0.89	20x8	0.90	31.15	2.88	2.88
18x6	0.81	21.62	0.95	0.95					
20x6	0.90	23.18	1.01	1.01					
	IBS	& BS - 10				IBS	& BS -12		
10x10	0.51	25.56	5.31	5.31	12x12	0.59	33.71	7.69	7.69
12x10	0.58	27.78	5.58	5.58	14x12	0.66	36.26	7.94	7.94
14x10	0.65	30.00	5.85	5.85	16x12	0.73	38.80	8.23	8.23
16x10	0.73	32.23	6.16	6.16	18x12	0.81	41.35	8.55	8.55
18x10	0.81	34.45	6.47	6.47	20x12	0.90	43.89	8.88	8.88
20x10	0.91	36.68	6.81	6.81	22x12	0.98	46.44	9.27	9.27
22x10	0.98	38.90	7.20	7.20	24x12	1.06	48.98	9.69	9.69


<u>30° SKEW (3:1 SLOPE) - CONTINUED:</u>											
	1	r	r	1		1	1	1	r		
			(1)	(1)				(1)	(1)		
	C.Y.	C.Y.	C.Y.	C.Y.		C.Y.	C.Y.	C.Y.	C.Y.		
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.		
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.		
	IBI	D & BD-4			IBD & BD-5						
8x4	0.43	8.54	0.56	0.56	10x5	0.50	11.59	0.67	0.67		
10x4	0.50	9.61	0.63	0.63	12x5	0.58	12.86	0.74	0.74		
12x4	0.57	10.68	0.69	0.69	16x5	0.73	15.34	0.87	0.87		
16x4	0.73	12.84	0.82	0.82	20x5	0.88	17.85	0.99	0.99		
20x4	0.88	15.00	0.95	0.95	24x5	1.03	20.35	1.12	1.12		
24x4	1.03	17.14	1.08	1.08	28x5	1.19	22.86	1.25	1.25		
	IBI	D & BD-6			IBD & BD-8						
12x6	0.58	17.40	0.78	0.78	16x8	0.74	27.87	2.11	2.11		
16x6	0.74	20.55	0.91	0.91	20x8	0.92	31.85	2.56	2.56		
20x6	0.88	23.67	1.03	1.03	24x8	1.05	35.82	3.09	3.09		
24x6	1.03	26.80	1.15	1.15	28x8	1.19	39.76	3.60	3.60		
28x6	1.19	29.98	1.27	1.27	32x8	1.35	43.74	4.15	4.15		
32x6	1.34	33.14	1.39	1.39							
	IBL) & BD-10				IBI) & BD-12				
20x10	0.90	37.56	6.82	6.53	24x12	1.07	50.15	9.58	9.25		
24x10	1.05	42.01	7.38	7.09	28x12	1.21	55.24	10.15	9.82		
28x10	1.20	46.50	7.95	7.66	32x12	1.37	60.38	10.83	10.49		
32x10	1.36	51.00	8.62	8.33	35x12	1.52	65.53	11.55	11.21		
36x10	1.51	55.54	9.34	9.05	40x12	1.67	70.62	12.22	11.88		
					u						

STRUCTURE EXCAV (ONE FT. DEPTH) FOR IBS & IBD & BS & BD SERIES BOX <u>CULVERT</u> 30° SKEW (3:1 SLOPE) - CONTINUED:

- (1) NOTE: The constant quantity includes the toe wall in all instances, the auxiliary slab under end of barrel, thickened apron where applicable, and center extension wall thickened apron on upstream headwall.
- NOTE: The quantities shown in above table are correct and will be used on the final estimate as the basis of payment unless authorized modifications are made.
- EXAMPLE: 128' of 8' X 6' Box Culvert (St. Std. BS-6). From Field Observations the average cut to flow line is as follows: Barrel 1.7 ft., Upstream Headwall 1.6 Ft., Downstream Headwall 1.3 ft. From Table: Str. Exc.= (128 x 0.42 x 41)+(13.82x2.18)+(13.82x1.88)+(0.64x2) = 186.95 Cu. Yds. Pay 187.0 Cu. Yds.

Table 26 - Continued:

Construction Manual

SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

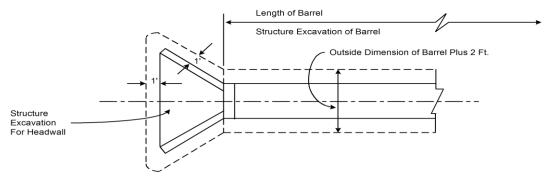
STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS-45° SKEW (3:1 SLOPE) FOR STANDARD ISK-45-3W FOR IBS & IBD SERIES

			(1)	(1)		1		(1)	(1)
	CV	CV	(1) C.Y.	(1)		C.Y.	C.Y.	(1)	(1) C.Y.
GIZE	C.Y.	C.Y.		C.Y.	CLZE			C.Y.	
SIZE	L.F.	One H.W.	Const.	Const.	SIZE	L.F.	One	Const.	Const.
	Bbl.		U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.
4.4	0.00	BS-4	0.52	0.50		0.00	BS-5	0.60	0.62
4x4	0.26	7.67	0.53	0.53	5x5	0.30	10.25	0.63	0.63
5x4	0.30	8.33	0.57	0.57	6x5	0.34	11.01	0.67	0.67
6x4	0.34	8.98	0.61	0.61	7x5	0.38	11.77	0.71	0.71
7x4	0.37	9.64	0.65	0.65	8x5	0.41	12.53	0.75	0.75
8x4	0.41	10.29	0.69	0.69	9x5	0.45	13.29	0.79	0.79
9x4	0.45	10.95	0.73	0.73	10x5	0.49	14.04	0.83	0.83
10x4	0.48	11.60	0.77	0.77	12x5	0.56	15.56	0.90	0.90
	IB	S & BS-6				IB	S & BS-8		
4x6	0.27	13.48	0.67	0.67	8x8	0.42	24.29	1.65	1.65
6x6	0.34	15.39	0.74	0.74	10x8	0.49	26.70	1.90	1.90
8x6	0.42	17.30	0.82	0.82	12x8	0.57	29.11	2.18	2.18
10x6	0.49	19.21	0.89	0.89	14x8	0.64	31.52	2.53	2.53
12x6	0.57	21.12	0.96	0.96	16x8	0.72	33.93	2.87	2.87
14x6	0.65	23.03	1.04	1.04	18x8	0.79	36.34	3.22	3.22
16x6	0.73	24.95	1.11	1.11	20x8	0.90	38.75	3.60	3.60
18x6	0.81	26.86	1.19	1.19					
20x6	0.90	28.77	1.26	1.26					
	IBS	& BS - 10)			IBS	S & BS -12	•	
10x10	0.51	32.09	6.56	6.56	12x12	0.59	42.31	9.48	9.48
12x10	0.58	34.81	6.89	6.89	14x12	0.66	45.43	9.79	9.79
14x10	0.65	37.53	7.22	7.22	16x12	0.73	48.55	10.14	10.14
16x10	0.73	40.26	7.59	7.59	18x12	0.81	51.66	10.53	10.53
18x10	0.81	42.98	7.98	7.98	20x12	0.90	54.78	10.94	10.94
20x10	0.91	45.70	8.40	8.40	22x12	0.98	57.89	11.42	11.42
22x10	0.98	48.43	8.87	8.87	24x12	1.06	61.01	11.93	11.93
				TADI	5.05			•	

			(1)	(1)				(1)	(1)		
	C.Y.	C.Y.	(1) C.Y.	(1) C.Y.		C.Y.	C.Y.	(1) C.Y.	(1) C.Y.		
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.		
SILL	Bbl.	H.W.	U.S.	D.S.	SIZE	Bbl.	H.W.	U.S.	D.S.		
		D & BD-4	0.5.	D.5.			D & BD-5	0.5.	D.5.		
Q 1			0.71	0.71	105			0.95	0.95		
8x4	0.43	10.62	0.71	0.71	10x5	0.50	14.42	0.85	0.85		
10x4	0.50	11.93	0.79	0.79	12x5	0.58	15.97	0.93	0.93		
12x4	0.57	12.24	0.87	0.87	16x5	0.73	19.01	1.08	1.08		
16x4	0.73	15.88	1.02	1.02	20x5	0.88	22.08	1.24	1.24		
20x4	0.88	18.53	1.18	1.18	24x5	1.03	25.15	1.40	1.40		
24x4	1.03	21.15	1.34	1.34	28x5	1.19	28.22	1.56	1.56		
	IBI	D & BD-6			IBD & BD-8						
12x6	0.58	21.68	0.99	0.99	16x8	0.74	34.73	2.65	2.65		
16x6	0.74	25.54	1.14	1.14	20x8	0.92	39.60	3.21	3.21		
20x6	0.88	29.36	1.29	1.29	24x8	1.05	44.47	3.86	3.86		
24x6	1.03	33.18	1.43	1.43	28x8	1.19	49.28	4.48	4.48		
28x6	1.19	37.09	1.59	1.59	32x8	1.35	54.16	5.15	5.15		
32x6	1.34	40.95	1.73	1.73							
	IBE) & BD-10				IBI) & BD-12				
20x10	0.90	46.78	8.36	8.07	24x12	1.07	62.44	11.72	11.39		
24x10	1.05	52.23	9.02	8.74	28x12	1.21	68.67	12.42	12.09		
28x10	1.20	57.73	9.73	9.44	32x12	1.37	74.97	13.25	12.90		
32x10	1.36	63.24	10.55	10.26	36x12	1.52	81.26	14.13	13.80		
36x10	1.51	68.80	11.43	11.14	40x12	1.67	87.50	14.96	14.60		

STRUCTURE EXCAV (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOXCULVERTS - 45° SKEW (3:1 SLOPE) - CONTINUED:

(1) NOTE: The constant quantity includes the tow wall in all instances, the auxiliary slab under end of barrel, thickened apron where applicable and center extension wall thickened apron or upstream headwall.


NOTE: The quantities shown in above table are correct and will be used on the final estimate as the basis of payment unless authorized modifications are made.

EXAMPLE: 86' of 6 x 4 Box Culvert (St. Std. BS-4). From Field Observations the average cut to flow line is as follows:
Barrel 1.4 Ft., Upstream Headwall 1.3 Ft., Downstream Headwall 1.5 Ft.
From Table: Str.Exc.(86x0.34x2.03)+(8.98x1.80)+(8.98x2.00)+(0.61x2) = 94.70 Cu. Yds.
Pay 94.7 Cu. Yds.

Table 27 - Continued

Mississippi Department of Transportation

Construction Manual

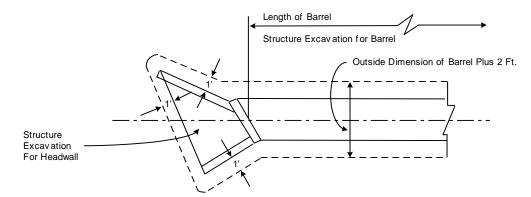
SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS - (4:1 SLOPE) FOR STANDARDS IWS-4 AND IWD-4 FOR IBS & IBD SERIES

			(1)	(1)				(1)	(1)
	C.Y.	C.Y.	C.Y.	C.Y.		C.Y.	C.Y.	C.Y.	C.Y.
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.
		BS-4					BS-5		
4x4	0.26	7.16	0.37	0.37	5x5	0.30	9.54	0.43	0.43
5x4	0.30	7.78	0.39	0.39	6x5	0.34	10.26	0.46	0.46
6x4	0.34	8.40	0.42	0.42	7x5	0.38	10.98	0.49	0.49
7x4	0.37	9.02	0.45	0.45	8x5	0.41	11.70	0.52	0.52
8x4	0.41	9.65	0.48	0.48	9x5	0.45	12.42	0.54	0.54
9x4	0.45	10.27	0.51	0.51	10x5	0.49	13.14	0.57	0.57
10x4	0.48	10.89	0.53	0.53	12x5	0.56	14.58	0.63	0.63
	IB	S & BS-6				IB	S & BS-8		
4x6	0.27	12.47	0.46	0.46	8x8	0.42	22.52	1.07	1.07
6x6	0.34	14.28	0.51	0.51	10x8	0.49	24.80	1.24	1.24
8x6	0.42	16.09	0.56	0.56	12x8	0.57	27.09	1.44	1.44
10x6	0.49	17.91	0.61	0.61	14x8	0.64	29.37	1.68	1.68
12x6	0.57	19.72	0.67	0.67	16x8	0.72	31.66	1.92	1.92
14x6	0.65	21.54	0.72	0.72	18x8	0.79	33.95	2.16	2.16
16x6	0.73	23.35	0.77	0.77	20x8	0.90	36.23	2.42	2.42
18x6	0.81	25.16	0.82	0.82					
20x6	0.90	26.98	0.88	0.88					
	IBS	& BS - 10				IBS	5 & BS -12		
10x10	0.51	29.77	5.50	5.50	12x12	0.59	39.25	8.11	8.11
12x10	0.58	32.35	5.73	5.73	14x12	0.66	42.21	8.32	8.32
14x10	0.65	34.93	5.97	5.97	16x12	0.73	45.16	8.57	8.57
16x10	0.73	37.52	6.23	6.23	18x12	0.81	48.12	8.84	8.84
18x10	0.81	40.10	6.50	6.50	20x12	0.90	51.08	9.13	9.13
20x10	0.91	42.68	6.79	6.79	22x12	0.98	54.03	9.46	9.46
22x10	0.98	45.27	7.12	7.12	24x12	1.06	56.99	9.82	9.82

			(1)	(1)				(1)	(1)		
	C.Y.	C.Y.	(1) C.Y.	(1) C.Y.		C.Y.	C.Y.	(1) C.Y.	(1) C.Y.		
SIZE	L.F.				SIZE	L.F.					
SIZE		One	Const.	Const.	SIZE		One	Const.	Const.		
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.		
		D & BD-4	I		IBD & BD-5						
8x4	0.43	9.96	0.49	0.49	10x5	0.50	13.50	0.59	0.59		
10x4	0.50	11.20	0.55	0.55	12x5	0.58	14.97	0.64	0.64		
12x4	0.57	12.44	0.60	0.60	16x5	0.73	17.85	0.75	0.75		
16x4	0.73	14.96	0.71	0.71	20x5	0.88	20.77	0.87	0.87		
20x4	0.88	17.48	0.83	0.83	24x5	1.03	23.68	0.98	0.98		
22x4	1.03	19.96	0.94	0.94	28x5	1.19	26.60	1.09	1.09		
	IBI	D & BD-6			IBD & BD-8						
12x6	0.58	20.25	0.68	0.68	16x8	0.74	32.42	1.78	1.78		
16x6	0.74	23.92	0.79	0.79	20x8	0.92	37.04	2.17	2.17		
20x6	0.88	27.54	0.89	0.89	24x8	1.05	41.66	2.62	2.62		
24x6	1.03	31.17	1.00	1.00	28x8	1.19	46.23	3.05	3.05		
28x6	1.19	34.87	1.11	1.11	32x8	1.35	50.84	3.53	3.53		
32x6	1.34	38.54	1.21	1.21							
	IBE) & BD-10				IBI) & BD-12				
20x10	0.90	43.71	6.86	6.58	24x12	1.07	58.34	9.79	9.45		
24x10	1.05	48.88	7.32	7.03	28x12	1.21	64.26	10.28	9.94		
28x10	1.20	54.10	7.81	7.52	32x12	1.37	70.23	10.85	10.52		
32x10	1.36	59.32	8.38	8.10	36X12	1.52	76.20	11.47	11.14		
36x10	1.51	64.60	9.01	8.72	40x12	1.67	82.11	12.05	11.71		

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS - (4:1 SLOPE) - CONTINUED:


(1) NOTE: The constant quantity includes the toe wall in all instances, the auxiliary slab under end of barrel, thickened apron where applicable and center extension wall thickened apron on upstream headwall.

NOTE: The quantities shown in above table are correct and will be used on the final estimate as the basis of payment unless authorized modifications are made.

EXAMPLE: 33.5' of - 8' x 6' Box Culvert (St. Std. BS-6). From Field Observation the average cut to flow line is as follows:
Barrel 1.7 Ft., Upstream Headwall 1.9 Ft., Downstream Headwall 1.3 Ft.
From Table: Str. Exc. (33.5 x 0.42 x 2.41) + (16.09 x 2.48) + (16.09 x 1.88) + (0.56 x 2) = 105.18 Cu. Yds.
Pay 105.2 Cu. Yds.

TABLE 28 - Continued:

Construction Manual

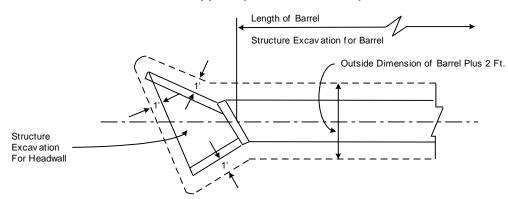
SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS - 15° SKEW (4:1 SLOPE) FOR STANDARD ISK-15-4W FOR IBS & IBD SERIES

			(1)	(1)				(1)	(1)
	C.Y.	C.Y.	C.Y.	C.Y.		C.Y.	C.Y.	C.Y.	C.Y.
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.
~122	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.
		BS-4					BS-5		
4x4	0.26	7.44	0.39	0.39	5x5	0.30	9.94	0.46	0.46
5x4	0.30	8.08	0.42	0.42	6x5	0.34	10.68	0.49	0.49
6x4	0.34	8.72	0.45	0.45	7x5	0.38	11.42	0.52	0.52
7x4	0.37	9.36	0.48	0.48	8x5	0.41	12.16	0.55	0.55
8x4	0.41	10.00	0.51	0.51	9x5	0.45	12.90	0.58	0.58
9x4	0.45	10.64	0.53	0.53	10x5	0.49	13.64	0.61	0.61
10x4	0.48	11.28	0.56	0.56	12x5	0.56	15.12	0.66	0.66
	IB	S & BS-6				IB	S & BS-8		
4x6	0.27	13.04	0.49	0.49	8x8	0.42	23.50	1.16	1.16
6x6	0.34	14.90	0.54	0.54	10x8	0.49	25.86	1.34	1.34
8x6	0.42	16.77	0.60	0.60	12x8	0.57	28.20	1.54	1.54
10x6	0.49	18.63	0.65	0.65	14x8	0.64	30.56	1.79	1.79
12x6	0.57	20.50	0.71	0.71	16x8	0.72	32.91	2.04	2.04
14x6	0.65	22.37	0.76	0.76	18x8	0.79	35.26	2.29	2.29
16x6	0.73	24.23	0.81	0.81	20x8	0.90	37.61	2.57	2.57
18x6	0.81	26.10	0.87	0.87					
20x6	0.90	27.96	0.92	0.92					
	IBS	& BS - 10)			IBS	5 & BS -12		
10x10	0.51	31.03	5.75	5.75	12x12	0.59	40.91	8.47	8.47
12x10	0.58	33.69	6.01	6.01	14x12	0.66	43.95	8.70	8.70
14x10	0.65	36.35	6.25	6.25	16x12	0.73	46.99	8.95	8.95
16x10	0.73	39.01	6.52	6.52	18x12	0.81	50.03	9.23	9.23
18x10	0.81	41.67	6.80	6.80	20x12	0.90	53.07	9.53	9.53
20x10	0.91	44.32	7.10	7.10	22x12	0.98	56.11	9.88	9.88
22x10	0.98	46.98	7.45	7.45	24x12	1.06	59.15	10.25	10.25
				TADI					

			(1)	(1)				(1)	(1)	
	C.Y.	C.Y.	C.Y.	C.Y.		C.Y.	C.Y.	C.Y.	C.Y.	
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.	
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.	
	IBI	D & BD-4				IB	D & BD-5			
8x4	0.43	10.32	0.52	0.52	10x5	0.50	14.01	0.62	0.62	
10x4	0.50	11.60	0.58	0.58	12x5	0.58	15.52	0.68	0.68	
12x4	0.57	12.88	0.63	0.63	16x5	0.73	18.49	0.79	0.79	
16x4	0.73	15.46	0.75	0.75	20x5	0.88	21.48	0.91	0.91	
20x4	0.88	18.04	0.87	0.87	24x5	1.03	24.48	1.03	1.03	
24x4	1.03	20.60	0.98	0.98	28x5	1.19	27.47	1.14	1.14	
	IB	D & BD-6			IBD & BD-8					
12x6	0.58	21.04	0.72	0.72	16x8	0.74	33.69	1.89	1.89	
16x6	0.74	24.81	0.83	0.83	20x8	0.92	38.43	2.29	2.29	
20x6	0.88	28.54	0.94	0.94	24x8	1.05	43.19	2.76	2.76	
24x6	1.03	32.27	1.05	1.05	28x8	1.19	47.89	3.22	3.22	
28x6	1.19	36.08	1.16	1.16	32x8	1.35	52.64	3.70	3.70	
32x6	1.34	39.85	1.27	1.27						
	IBL	0 & BD-10				IBI) & BD-12			
20x10	0.90	45.37	7.17	6.88	24x12	1.07	60.54	10.20	9.86	
24x10	1.05	50.69	7.64	7.36	28x12	1.21	66.62	10.71	10.37	
28x10	1.20	56.06	8.16	7.87	32x12	1.37	72.77	11.31	10.97	
32x10	1.36	61.42	8.75	8.46	36X12	1.52	78.92	11.95	11.61	
36x10	1.51	66.86	9.39	9.11	40x12	1.67	85.00	12.55	12.21	

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS - 15° SKEW (4:1 SLOPE) CONTINUED:


(1) NOTE: The constant quantity includes the toe wall in all instances, the auxiliary slab under end of barrel, thickened apron where applicable and center extension wall thickened apron or upstream headwall.

NOTE: The quantities shown in above table are correct and will be used on the final estimate as the basis of payment unless authorized modifications are made.

EXAMPLE: 37.8' of 20' X 5' Box Culvert (St.Std. BD-5). From Field Observations the average cut to flow line is as follows:
Barrel 1.9 Ft., Upstream headwalls 2.1 Ft., Downstream Headwall 1.5 Ft.
From Table: Str. Exc. (37.8 x 0.88 x 2.73) + (21.48x2.60) + (21.48x2.00) + (0.91x2) = 191.44 Cu. Yds.
Pay 191.4 Cu. Yds.

Mississippi Department of Transportation

Construction Manual

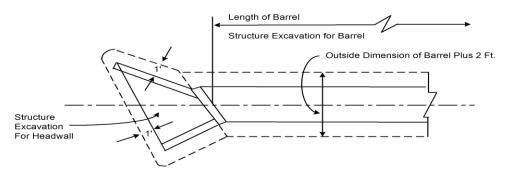
SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS 7 IBD AND BS & BD SERIES BOX CULVERTS - 30° SKEW (4:1 SLOPE) FOR STANDARD ISK-30-4W FOR IBS & IBD SERIES

			(1)	(1)				(1)	(1)
	C.Y.	C.Y.	Ċ.Ý.	Ċ.Ý.		C.Y.	C.Y.	Ċ.Ý.	Ċ.Ý.
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.
		BS-4					BS-5		
4x4	0.26	8.79	0.47	0.47	5x5	0.30	11.73	0.56	0.56
5x4	0.30	9.51	0.51	0.51	6x5	0.34	12.56	0.59	0.59
6x4	0.34	10.22	0.54	0.54	7x5	0.38	13.38	0.62	0.62
7x4	0.37	10.93	0.57	0.57	8x5	0.41	14.22	0.66	0.66
8x4	0.41	11.65	0.60	0.60	9x5	0.45	15.04	0.69	0.69
9x4	0.45	12.36	0.63	0.63	10x5	0.49	15.86	0.72	0.72
10x4	0.48	13.07	0.67	0.67	12x5	0.56	17.52	0.78	0.78
	IB	S & BS-6				IB	S & BS-8		
4x6	0.27	15.55	0.60	0.60	8x8	0.42	27.82	1.38	1.38
6x6	0.34	17.63	0.66	0.66	10x8	0.49	30.44	1.58	1.58
8x6	0.42	19.71	0.72	0.72	12x8	0.57	33.06	1.82	1.82
10x6	0.49	21.79	0.78	0.78	14x8	0.64	35.69	2.10	2.10
12x6	0.57	23.88	0.84	0.84	16x8	0.72	38.31	2.37	2.37
14x6	0.65	25.96	0.90	0.90	18x8	0.79	40.94	2.66	2.66
16x6	0.73	28.04	0.96	0.96	20x8	0.90	43.56	2.96	2.96
18x6	0.81	30.12	1.02	1.02					
20x6	0.90	32.20	1.08	1.08					
	IBS	& BS - 10				IBS	5 & BS -12		
10x10	0.51	36.67	6.68	6.68	12x12	0.59	48.33	9.76	9.76
12x10	0.58	39.63	6.96	6.96	14x12	0.66	51.71	10.01	10.01
14x10	0.65	42.60	7.24	7.24	16x12	0.73	55.10	10.30	10.30
16x10	0.73	45.57	7.54	7.54	18x12	0.81	58.50	10.61	10.61
18x10	0.81	48.53	7.86	7.86	20x12	0.90	61.89	10.95	10.95
20x10	0.91	51.50	8.20	8.20	22x12	0.98	65.29	11.34	11.34
22x10	0.98	54.46	8.58	8.58	24x12	1.06	68.68	11.75	11.75

			(1)	(1)				(1)	(1)	
	C.Y.	C.Y.	C.Y.	C.Y.		C.Y.	C.Y.	C.Y.	C.Y.	
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.	
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.	
	IBI	D & BD-4				IB	D & BD-5			
8x4	0.43	12.01	0.62	0.62	10x5	0.50	16.29	0.74	0.74	
10x4	0.50	13.43	0.68	0.68	12x5	0.58	17.98	0.80	0.80	
12x4	0.57	14.86	0.75	0.75	16x5	0.73	21.28	0.93	0.93	
16x4	0.73	17.74	0.88	0.88	20x5	0.88	24.63	1.06	1.06	
20x4	0.88	20.62	1.01	1.01	24x5	1.03	27.97	1.19	1.19	
24x4	1.03	23.47	1.13	1.13	28x5	1.19	31.31	1.32	1.32	
	IBI	D & BD-6			IBD & BD-8					
12x6	0.58	24.49	0.86	0.86	16x8	0.74	39.19	2.20	2.20	
16x6	0.74	28.70	0.98	0.98	20x8	0.92	44.50	2.65	2.65	
20x6	0.88	32.86	1.10	1.10	24x8	1.05	49.80	3.18	3.18	
24x6	1.03	37.02	1.22	1.22	28x8	1.19	55.05	3.69	3.69	
28x6	1.19	41.27	1.35	1.35	32x8	1.35	60.35	4.23	4.23	
32x6	1.34	45.58	1.47	1.47						
	IBL) & BD-10		•		IBI) & BD-12			
20x10	0.90	52.67	8.22	7.94	24x12	1.07	70.25	11.65	11.31	
24x10	1.05	58.61	8.76	8.47	28x12	1.21	77.03	12.22	11.88	
28x10	1.20	64.60	9.33	9.04	32x12	1.37	83.90	12.89	12.56	
32x10	1.36	70.59	10.00	9.71	36X12	1.52	90.75	13.61	13.28	
36x10	1.51	76.65	10.72	10.43	40x12	1.67	97.53	14.28	13.95	

<u>STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND</u> <u>BS & BD SERIES BOX CULVERTS - 30° SKEW (4:1 SLOPE)</u> CONTINUED:


(1) NOTE: The constant quantity includes the toe wall in all instances, the auxiliary slab under end of barrel, thickened apron where applicable and center extension wall thickened apron on upstream headwall.

NOTE: The quantities shown in above table are correct and will be used on the final estimate as the basis of payment unless authorized modifications are made.

EXAMPLE: 42.4' of 2' x 6' Box Culvert (St. Std. BS-6). From Field Observation, the average cut to flow line is as follows:
Barrel 2.4 Ft., Upstream Headwall 2.6 Ft., Downstream Headwall 1.8 Ft.
From Table: Str. Excav. (42.4 x 0.57 x 3.28)+ (23.88 x 3.18) + (23.88 x 2.38) + (0.84 x 2) = 213.72 Cu. Yds.
Pay 213.7 Cu. Yds.

Table 30 - Continued:

Construction Manual

SKETCH SHOWING LIMITS FOR COMPUTING STRUCTURE EXCAVATION

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS - 45° SKEW (4:1 SLOPE) FOR STANDARD ISK-45-4W FOR IBS & IBD SERIES

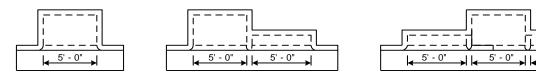
			(1)	(1)				(1)	(1)
	C.Y.	C.Y.	Ċ.Ý.	Ċ.Ý.		C.Y.	C.Y.	Ċ.Y.	Ċ.Ý.
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.
		BS-4					BS-5		
4x4	0.26	10.46	0.56	0.56	5x5	0.30	13.97	0.66	0.66
5x4	0.30	11.35	0.60	0.60	6x5	0.34	14.99	0.70	0.70
6x4	0.34	12.21	0.64	0.64	7x5	0.38	16.00	0.74	0.74
7x4	0.37	13.09	0.68	0.68	8x5	0.41	17.01	0.78	0.78
8x4	0.41	13.96	0.72	0.72	9x5	0.45	18.03	0.82	0.82
9x4	0.45	14.83	0.76	0.76	10x5	0.49	19.04	0.86	0.86
10x4	0.48	15.70	0.80	0.80	12x5	0.56	21.06	0.94	0.94
	IB	S & BS-6				IB	S & BS-8		
4x6	0.27	18.47	0.71	0.71	8x8	0.42	33.18	1.69	1.69
6x6	0.34	21.01	0.78	0.78	10x8	0.49	36.39	1.94	1.94
8x6	0.42	23.57	0.85	0.85	12x8	0.57	39.61	2.22	2.22
10x6	0.49	26.11	0.93	0.93	14x8	0.64	42.82	2.57	2.57
12x6	0.57	28.66	1.00	1.00	16x8	0.72	46.03	2.91	2.91
14x6	0.65	31.21	1.08	1.08	18x8	0.79	49.24	3.26	3.26
16x6	0.73	33.76	1.15	1.15	20x8	0.90	52.45	3.64	3.64
18x6	0.81	36.31	1.23	1.23					
20x6	0.90	38.85	1.30	1.30					
	IBS	& BS - 10)			IBS	& BS -12		
10x10	0.51	43.78	7.97	7.97	12x12	0.59	57.73	11.65	11.65
12x10	0.58	47.42	8.30	8.30	14x12	0.66	61.87	11.96	11.96
14x10	0.65	51.05	8.64	8.64	16x12	0.73	66.04	12.31	12.31
16x10	0.73	54.68	9.01	9.01	18x12	0.81	70.19	12.70	12.70
18x10	0.81	58.31	9.40	9.40	20x12	0.90	74.34	13.11	13.11
20x10	0.91	61.94	9.82	9.82	22x12	0.98	78.50	13.59	13.59
22x10	0.98	65.57	10.29	10.29	24x12	1.06	82.65	14.11	14.11

					1					
			(1)	(1)				(1)	(1)	
	C.Y.	C.Y.	C.Y.	C.Y.		C.Y.	C.Y.	C.Y.	C.Y.	
SIZE	L.F.	One	Const.	Const.	SIZE	L.F.	One	Const.	Const.	
	Bbl.	H.W.	U.S.	D.S.		Bbl.	H.W.	U.S.	D.S.	
	IBI	D & BD-4		-		IB	D & BD-5			
8x4	0.43	14.39	0.74	0.74	10x5	0.50	19.54	0.88	0.88	
10x4	0.50	16.13	0.82	0.82	12x5	0.58	21.61	0.96	0.96	
12x4	0.57	17.88	0.89	0.89	16x5	0.73	25.65	1.12	1.12	
16x4	0.73	21.40	1.05	1.05	20x5	0.88	29.75	1.27	1.27	
20x4	0.88	24.93	1.21	1.21	24x5	1.03	33.84	1.43	1.43	
24x4	1.03	28.42	1.37	1.37	28x5	1.19	37.93	1.59	1.59	
	IBI	D & BD-6			IBD & BD-8					
12x6	0.58	29.40	1.02	1.02	16x8	0.74	47.09	2.69	2.69	
16x6	0.74	34.55	1.17	1.17	20x8	0.92	53.58	3.25	3.25	
20x6	0.88	39.65	1.32	1.32	24x8	1.05	60.07	3.90	3.90	
24x6	1.03	44.75	1.47	1.47	28x8	1.19	66.50	4.52	4.52	
28x6	1.19	49.95	1.62	1.62	32x8	1.35	72.99	5.19	5.19	
32x6	1.34	55.10	1.77	1.77						
	IBE	0 & BD-10				IBI) & BD-12			
20x10	0.90	63.37	9.79	9.50	24x12	1.07	84.55	13.89	13.56	
24x10	1.05	70.63	10.44	10.16	28x12	1.21	92.86	14.59	14.26	
28x10	1.20	77.67	11.15	10.86	32x12	1.37	101.26	15.42	15.09	
32x10	1.36	85.31	11.97	11.68	36X12	1.52	109.65	16.30	15.97	
36x10	1.51	92.72	12.85	12.56	40x12	1.67	117.96	17.13	16.79	

STRUCTURE EXCAVATION (ONE FT. DEPTH) FOR IBS & IBD AND BS & BD SERIES BOX CULVERTS - 45° SKEW (4:1 SLOPE) CONTINUED:

- (1) NOTE: The constant quantity includes the toe wall in all instances, the auxiliary slab under end of barrel, thickened apron where applicable and center extension wall thickened apron on upstream headwall.
- NOTE: The quantities shown in above table are correct and will be used on the final estimate as the basis of payment unless authorized modifications are made.
- EXAMPLE: 47.2' of 10' x 8' Box Culvert (St. Std. BS-8, 45° Skew) from Field Observations the average cut to flow line is as follows:
 Barrel 2.1 Ft., Upstream Headwall 2.4 Ft., Downstream Headwall 1.6 Ft.
 From Table: Str. Exc. (47.2 x 0.49 x 2.89) + (36.39 x 3.11) + (36.39 x 2.31) + (1.94 x 2) = 267.95 Cu. Yds.
 Pay 268.0 Cu. Yds.

9.4.4 Signpost Foundations and Footing Tables – Final Quantity Data


POST	FOOT					FC	OOTING	DEPTH	ł				
SIZE - TYPE	DIA M	ITEM	3'-0"	3'-6"	4'-0"	4'-6"	5'-0"	5'-6"	6'-0"	6'-6"	7'-0"	7'-6"	8'-0"
3 I 5.7	1'-6"	Conc. Steel	0.20 19	0.23 22	0.26 26	0.29 29	0.33 32	0.36 35	0.39 39	0.43 42	0.46 45	0.49 48	0.52 52
4 I 7.7	1'-6"	Conc. Steel	0.20 19	0.23 22	0.26 26	0.29 29	0.33 32	0.36 35	0.39 39	0.42 42	0.46 45	0.49 48	0.52 52
6 B 8.5	2'-0"	Conc. Steel	0.35 21	0.41 25	0.46 28	0.52 32	0.58 35	0.64 39	0.70 43	0.76 46	0.81 50	0.87 53	0.93 57
6 B 12	2'-0"	Conc. Steel	0.35 29	0.41 34	0.46 39	0.52 44	0.58 49	0.64 54	0.70 59	0.76 64	0.81 69	0.87 74	0.93 79
6 WF 15.5	2'-0"	Conc. Steel	0.35 38	0.41 45	0.46 52	0.52 59	0.58 66	0.64 72	0.70 79	0.75 86	0.81 93	0.87 100	0.93 107
8 WF 17	2'-0"	Conc. Steel	0.35 49	0.41 58	0.46 67	0.52 76	0.58 85	0.64 94	0.70 103	0.75 112	0.81 121	0.87 130	0.93 139
8 WF 20	2'-0"	Conc. Steel	0.35 61	0.40 73	0.46 84	0.52 96	0.58 108	0.64 119	0.69 131	0.75 142	0.81 154	0.87 165	0.93 177
10 WF 21	2'-0"	Conc. Steel	0.35 76	0.40 90	0.46 105	0.52 119	0.58 134	0.64 148	0.69 163	0.75 177	0.81 192	0.87 206	0.93 221
10 WF 25	2'-0"	Conc. Steel	0.34 94	0.40 112	0.46 130	0.52 148	0.58 166	0.64 184	0.69 203	0.75 221	0.81 239	0.87 257	0.93 275
12 WF 27	2'-0"	Conc. Steel	0.34 114	0.40 136	0.46 158	0.52 181	0.58 203	0.64 225	0.69 247	0.75 269	0.81 291	0.87 313	0.93 335

Concrete (Class "B") in Cubic Yards Steel (Structural) in Lbs.

NOTE: The quantities shown in above Table are correct and will be used on the final estimate as the basis of payment, unless authorized modifications are made.

5' - 0"

9.4.5 Concrete and Reinforcing Steel for SS-2 – Final Quantity Data

QUANTITIES SHOWN IN TABLE ARE FOR ONE REGULAR INLET 5'-0" FOR INLETS WITH ONE EXTENSION (10'-0"), ADD 0.89 C.Y. CONCRETE AND 101 LBS. REINFORCING STEEL.

FOR INLETS WITH TWO EXTENSIONS (15'-0"), ADD 1.78 C.Y. CONCRETE AND 202 LBS. STEEL.

INLET						
DEPTH				V"		
"H" (Ft.)	2' -	· 6"	3' -	- 0"	3' -	- 6"
	CONC.	STEEL	CONC.	STEEL	CONC.	STEEL
3.0	2.00	191	2.15	195	2.31	199
3.1	2.03	193	2.18	197	2.35	201
3.2	2.06	195	2.22	199	2.38	203
3.3	2.09	198	2.25	202	2.42	206
3.4	2.13	200	2.28	204	2.45	208
3.5	2.16	202	2.32	206	2.49	210
3.6	2.19	203	2.35	207	2.53	211
3.7	2.22	204	2.39	208	2.56	212
3.8	2.25	206	2.42	210	2.60	214
3.9	2.29	207	2.45	211	2.63	215
4.0	2.32	208	2.49	212	2.66	216
4.1	2.35	210	2.52	214	2.70	218
4.2	2.38	213	2.56	217	2.73	221
4.3	2.41	215	2.59	219	2.77	223
4.4	2.44	218	2.62	222	2.80	226
4.5	2.47	220	2.65	224	2.83	228
4.6	2.50	221	2.68	225	2.87	229
4.7	2.53	222	2.72	226	2.90	230
4.8	2.56	222	2.75	226	2.94	230
4.9	2.60	223	2.78	227	2.97	231
5.0	2.63	224	2.82	228	3.01	232
5.1	2.66	227	2.85	231	3.05	235
5.2	2.69	230	2.89	234	3.08	238
5.3	2.72	232	2.92	236	3.12	240
5.4	2.76	235	2.95	239	3.15	243
5.5	2.79	238	2.99	242	3.19	246
5.6	2.82	239	3.02	243	3.22	247
5.7	2.85	240	3.06	244	3.26	248
5.8	2.88	240	3.09	244	3.29	248
5.9	2.92	241	3.12	245	3.33	249
6.0	2.95	242	3.15	246	3.36	250
6.1	2.98	244	3.18	248	3.39	252
6.2	3.01	246	3.22	250	3.44	254
6.3	3.04	249	3.25	253	3.47	257

INLET DEPTH			"W	<i>[</i> "			
"H" (Ft.)	2' -	6"	3' -	- 0"	3' - 6"		
	CONC.	STEEL	CONC.	STEEL	CONC.	STEEL	
6.4	3.08	251	3.28	255	3.51	259	
6.5	3.11	253	3.31	257	3.54	261	
6.6	3.14	254	3.35	258	3.58	262	
6.7	3.17	255	3.38	259	3.61	263	
6.8	3.21	257	3.41	261	3.65	265	
6.9	3.24	258	3.45	262	3.68	266	
7.0	3.27	259	3.48	263	3.72	267	
7.1	3.30	261	3.51	265	3.75	269	
7.2	3.33	263	3.55	267	3.79	271	
7.3	3.36	266	3.58	270	3.82	274	
7.4	3.40	268	3.61	272	3.86	276	
7.5	3.43	270	3.65	274	3.89	278	
7.6	3.46	271	3.68	275	3.93	279	
7.7	3.49	272	3.71	276	3.96	280	
7.8	3.52	274	3.75	278	4.00	282	
7.9	3.55	275	3.78	279	4.03	283	
8.0	3.58	276	3.81	280	4.07	284	
8.1	3.62	278	3.85	282	4.11	286	
8.2	3.65	280	3.88	284	4.14	288	
8.3	3.68	283	3.91	287	4.18	291	
8.4	3.71	285	3.95	289	4.21	293	
8.5	3.74	287	3.98	291	4.25	295	
8.6	3.77	288	4.01	292	4.28	296	
8.7	3.80	289	4.05	293	4.32	297	
8.8	3.84	291	4.08	295	4.35	299	
8.9	3.87	292	4.11	296	4.39	300	
9.0	3.90	293	4.15	297	4.42	301	

Concrete and Reinforcing Steel for SS-2 – Final Quantity Data - Continued

INLET DEPTH			"V	W"		
"H" (Ft.)	4' -	- 0"	4' -	- 6"	5'	- 0"
`, , , , , , , , , , , , , , , , ,	CONC.	STEEL	CONC.	STEEL	CONC.	STEEL
3.0	2.47	203	2.63	207	2.79	211
3.1	2.50	205	2.67	209	2.83	213
3.2	2.54	207	2.71	211	2.87	215
3.3	2.58	210	2.75	214	2.91	218
3.4	2.62	212	2.79	216	2.95	220
3.5	2.66	214	2.83	218	3.00	222
3.6	2.69	215	2.87	219	3.04	223
3.7	2.73	216	2.91	220	3.07	224
3.8	2.76	218	2.95	222	3.11	226
3.9	2.80	219	2.99	223	3.14	227
4.0	2.83	220	3.01	224	3.18	228
4.1	2.87	222	3.05	226	3.22	230
4.2	2.90	225	3.08	229	3.26	233
4.3	2.94	227	3.13	231	3.30	235
4.4	2.98	230	3.18	234	3.34	238
4.5	3.02	232	3.21	236	3.40	240
4.6	3.06	233	3.25	237	3.44	241
4.7	3.09	234	3.29	238	3.48	242
4.8	3.13	234	3.33	238	3.52	242
4.9	3.17	235	3.36	239	3.56	243
5.0	3.21	236	3.40	240	3.60	244
5.1	3.25	239	3.44	243	3.64	247
5.2	3.28	242	3.48	246	3.68	250
5.3	3.32	244	3.52	248	3.72	252
5.4	3.36	247	3.56	251	3.76	255
5.5	3.40	250	3.60	254	3.81	258
5.6	3.43	251	3.64	255	3.85	259
5.7	3.47	252	3.68	256	3.89	260
5.8	3.50	252	3.72	256	3.93	260
5.9	3.54	253	3.75	257	3.97	261
6.0	3.57	254	3.78	258	4.00	262
6.1	3.60	256	3.81	260	4.04	264
6.2	3.64	258	3.86	262	4.08	266
6.3	3.67	261	3.90	265	4.12	269
6.4	3.71	263	3.94	267	4.16	271
6.5	3.75	265	3.98	269	4.20	273
6.6	3.78	266	4.02	270	4.24	274
6.7	3.82	267	4.06	271	4.28	275
6.8	3.86	269	4.10	273	4.32	277
6.9	3.90	270	4.13	274	4.36	278
7.0	3.93	271	4.17	275	4.40	279

Concrete and Reinforcing Steel for SS-2 – Final Quantity Data - Continued

INLET DEPTH			"1	W"			
"H" (Ft.)	4'	- 0"	4'	- 6"	5' - 0"		
	CONC.	STEEL	CONC.	STEEL	CONC.	STEEL	
7.1	3.97	273	4.21	277	4.44	281	
7.2	4.01	275	4.25	279	4.49	283	
7.3	4.04	278	4.29	282	4.53	286	
7.4	4.08	280	4.33	284	4.57	288	
7.5	4.11	282	4.37	286	4.61	290	
7.6	4.15	283	4.41	287	4.65	291	
7.7	4.19	284	4.45	288	4.69	292	
7.8	4.23	286	4.48	290	4.73	294	
7.9	4.27	287	4.52	291	4.77	295	
8.0	4.30	288	4.56	292	4.81	296	
8.1	4.34	290	4.60	294	4.85	298	
8.2	4.38	292	4.64	296	4.89	300	
8.3	4.41	295	4.68	299	4.93	303	
8.4	4.45	297	4.72	301	4.97	305	
8.5	4.49	299	4.76	303	5.01	307	
8.6	4.52	300	4.80	304	5.06	308	
8.7	4.56	301	4.83	305	5.10	309	
8.8	4.60	303	4.87	307	5.14	311	
8.9	4.64	304	4.91	308	5.18	312	
9.0	4.67	305	4.95	309	5.22	313	

Concrete and Reinforcing Steel for SS-2 – Final Quantity Data - Continued

- NOTE: The quantities shown, minus volumetric displacement of concrete by pipe culverts through inlet walls, will be used as the basis of final payment unless this plan is modified.
- EXAMPLE: Determine concrete & reinforcing steel for SS-2 inlet with one extension, used with concrete pavement. Inlet height ("H") 7.2 Ft., width ("W") 3' 6"; one 24" pipe, one 30" pipe.

	Conc. C.Y.	Steel Lbs.
From Table 5' - 0" inlet	3.79	271
Add for one extension	.89	101
Add for M bars, 5' - 0" inlet *		73
Add for M bars one extension *		27
	4.68	472
Deduction for one 24" pipe	.09	
Deduction for one 30" pipe	.14	
Pay Quantity	4.45	472

* NOTE: This step is not necessary unless constructed in conjunction with concrete pavement.

See SS-2 Standard Drawing for these additional (Bars M) steel quantities.

9.5 PREPARATION OF FINAL PLANS OF COMPLETED WORK

A ¹/₂-scale set of prints bearing the stamp "FINAL PLANS OF COMPLETED WORK" will be mailed to the Project Engineer along with other copies of construction plans. These plans MUST be kept neat since they are the permanent records showing how the project was constructed.

The data shown on the Final Plans must agree with that recorded on Form CSD-200 and the quantities on the Final Estimate forms.

- 1. <u>Title and Layout Sheet</u>.
 - a. The names of the Contractor and the District Engineer, the Project Engineer's signature, the date work started, and the date work accepted are to be recorded in the hand-stamped block near the upper right-hand corner. If final data is submitted before final acceptance of the project, leave blank the space for: "Date Work Accepted."
 - b. Project data such as equations and length shown on the left-hand side of the sheet are to be corrected to conform to actual construction.
- 2. <u>Quantity Sheet</u>. Under the heading "Recapitulation of Quantities," in the column designated as Final Quantities, list the total final quantities for the project. If any items were added after construction was begun, show the items and quantities. DO NOT REDRAW THE QUANTITY SHEET. NOTE: An (X) is to be drawn across all other boxes listing individual structures, as the details on these items are to be shown on the plan profile sheets and in the Final Report.
- 3. <u>Typical Section Sheets</u>. Retain the typical section sheets in the assembly, indicating any authorized changes.
- 4. Plan and Profile Sheets.
 - (a) Plot actual finished centerline elevations and indicate the grade line and final elevations using <u>permanent red ink</u> for all types of projects. The final elevations need only be shown at even stations, P.V.C.s, P.V.I.s and P.V.T.s and in addition at +50s on vertical curves of paving projects. Revise the percent of grade if changed from the original.

It will not be necessary to take final profile elevations on surface treatment and pavement projects on which the granular material has been placed on previous contracts, and which have been constructed in accordance with the plans, provided a statement is added on each plan profile sheet to the effect that "the final profile grade as constructed conforms very closely to the theoretical grade, except where final profile grade elevations have been noted on this sheet."

(b) Check or correct (<u>permanent red ink</u>) the flow line, (giving upstream and downstream elevation) station, size, length, and type of drainage structure actually constructed.

Structures that were not built are to be crossed (XXX) out, with an appropriate explanation. When locations of structures and ramps are changed, use black ink to plot the new location indicating direction of flow at structures.

- (c) Check or correct (permanent red ink) all Bench Mark locations and elevations and equations.
- (d) Check (<u>permanent red ink</u>) all R.O.W. markers that were placed according to the original plans, cross out the ones that were shifted and with black ink plot the new location with correct station and distance from centerline.
- (e) Plot all changes in alignment. (permanent red ink).
- (f) The Project Engineer's signature is required in the upper right-hand corner of each sheet of the final plans.

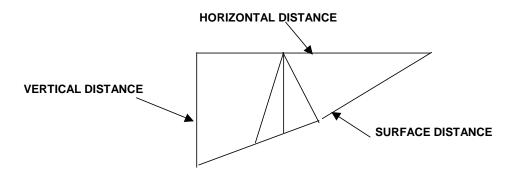
9.6 REFERENCES

1. <u>Electronic Recording of Areas.</u> The following instructions are to be used when measuring horizontal areas with electronic recording instruments and making computations using Microstation:

Data measured using electronic recording instruments should be downloaded into the computer. After computer calculations are complete the output should be displayed in individual Item Reports.

The Item Report should list the following:

Final Quantities


Project Number:

County:

Project Engineer:

The Project Engineer should sign the printout of the file and send the electronic files to the Contract Administration Division.

Do not use horizontal distances when specifications require surface measurements.

NOTE: SEE ROADWAY DESIGN WEBSITE FOR ADDITIONAL INFORMATION

2. <u>Electronic Final Quantities Work Sheet.</u> The electronic forms should be approved by Contract Administration Division prior to being used for computing final quantities.

If the electronic forms are used, the field books or other recorded documentation of the data used for input to these spreadsheets should also be submitted. You must show where the input data was obtained. The field books or other recorded documentation of this data should be arranged in a manner that the data in the field books can be easily correlated with the data in the spreadsheets.

When using these programs, send an electronic file and the hard copy of the spreadsheet.

3. <u>LVM Measurements</u>. Form <u>CAD-230</u> is a spreadsheet based form used for computing truck volumes. Tickets for individual loads are entered into SiteManager to calculate final pay for items paid by LVM.

Tickets should be input on a daily basis. The day's tickets should be placed in numerical sequence in ascending order. The day's SiteManager printout should be wrapped around tickets for that day. The tickets and the SiterManager printout for the pay item should be submitted with the final data.

In addition to Form <u>CAD-230</u>, field books or other recorded documentation of the data used for input to these spreadsheets should also be submitted. You must show where the input data was obtained. The field books or other recorded documentation of this data should be arranged in a manner that the data in the field books can be easily correlated with the data put into the spreadsheets.

4. <u>Overrun/Underrun Statement.</u> Overrun/underrun statements are required on Form CSD-200 for all pay items that have an overrun or underrun of more than ten percent (10%) and a cost of more than \$10,000.00. These pay items are noted by a double asterisk (**). A Semi-Final Quantity Adjustment must be processed in SiteManager at this time. The Semi-Final Quantity Adjustment is an internal document and should not be distributed.

The purpose of an overrun/underrun statement is to find why there is a difference in the estimated and actual amount and make corrections toward improved performance.

The reasons stated for the overrun/underrun of a pay item should be factual and worded so that MDOT can determine a reason for the difference and attempt to correct it. Contract Administration will review the justification for any overrun or underrun, forward any relevant comments to the applicable Division, coordinate any corrections to be made, and submit recommendations to the appropriate District Office or Division.

Events may happen that are beyond the control of MDOT. These events should be recorded and, while possibly no action will be taken, the majority of large overruns and underruns may be reduced.

CHAPTER 10 – CONSTRUCTION SURVEYING

10.1 GENERAL

Surveying for most projects let to contract by the Department is now performed by Contractor forces in accordance with Section 699 of the Standard Specifications. When the contract provides a pay item for construction stakes, the Department is responsible for establishing basic horizontal and vertical alignment. The surveying work and information provided for the Contractor should be performed with the same accuracy and diligence as work done by the Department when no pay item for construction stakes is provided. Even though the Contractor is responsible for the majority of the surveying when a pay item is provided, the inspector should be familiar with contents of this chapter and the Surveying Manual in order to properly monitor the Contractor's surveying work.

It should be understood that this section of the Manual does not set the policies or procedures for surveying. The MDOT Surveying Manual establishes uniform policies and procedures for surveys within the Mississippi Department of Transportation. Surveying personnel should familiarize themselves with the content of the Surveying Manual.

A. <u>Construction Surveying</u>. This section of the Construction Manual is not a substitute for a textbook or handbook on surveying. It is assumed that party chiefs, instrument persons and other affected project personnel have the necessary tables, handbooks, and other data. This section of the Manual will in general provide the standard methods of staking to be used on Mississippi Department of Transportation construction projects. The instruction and methods contained herein generally should provide sufficient latitude to cover all but the most unusual of circumstances.

Construction surveying represents a large portion of the construction engineering cost and therefore, requires study to eliminate needless refinements. Surveying techniques that will provide clear guidance, a maximum of economy, and proper auditable documentation to substantiate quantities should be utilized.

Centerlines, right-of-way monuments, and bench marks should be established to required limits of accuracy. Other stakes should only be established to standards commensurate with their use. Construction survey parties are under the direction of the Project Engineer. Therefore, the Project Engineer must be assured that construction survey personnel assigned to the Project Engineer are familiar with proper methods of staking and that training has been or will be provided as necessary.

When there is no payment for construction staking in the contract, the Standard Specifications provide that the Engineer will set construction stakes establishing lines, slopes, and profile-grade in road work and centerline and bench marks for bridge work, culvert work, protective and accessory structures and appurtenances deemed necessary. The Engineer will furnish the Contractor all necessary information relating to lines, slopes and grades. These stakes and marks shall constitute the field control by with which the Contractor shall establish other necessary controls and perform the work. It is expected that the Contractor will provide grade foremen, carpenter foremen, etc., capable of setting intermediate grade stakes, forms and the like from the Engineer's field layout staking.

The specifications further provide that the Contractor be held responsible for the preservation of all stakes and marks, and if any of the construction stakes or marks have been carelessly,

negligently, or willfully destroyed or disturbed by the Contractor, the cost of replacing them will be charged against the Contractor and will be deducted from the payment for the work. It also provides that the Department will be responsible for the accuracy of lines, slopes, grades, and other engineering work which is set forth under this section.

On projects where considerable staking is required, the Project Engineer should begin staking as far in advance of the beginning of construction operations as conditions will permit. This lead time should assure that staking will be maintained well in advance of the Contractor's operations and requirements. In the event that stakes stand over the winter, their message and possible displacement should be checked prior to use. Bench marks, temporary bench marks, and other primary controls should be rechecked prior to use after a winter layover. When staking is delegated to an assistant, the Project Engineer will ascertain that the assistant is acquainted with the procedures to be followed. The Project Engineer will direct the work so that lost or destroyed points may be reproduced with a minimum of expense. The Contractor and Project Engineer share the responsibility to keep each other informed as to work schedules to properly plan the staking work. No delays in staking should be permitted that will hinder the construction operations. However, Contractors will be expected to finish as they go, within the stakes that are set.

Work procedures in staking a project must be conducted in a manner to avoid errors, which may lead to additional expense for the project. In staking structures or other work requiring exactness, the work must be carefully done and rechecked before being released as final. The Party Chief must be familiar with the methods and procedures in staking. Concurrence as to the method and procedure to be used must be obtained from the Project Engineer before the start of staking operations. Each member of the survey party, especially new members, should be properly instructed in the proper method of taking measurements and setting stakes. Periodic observations and checks on the work are essential in assuring that the survey work proceeds properly and conforms to the accuracy required.

The Project Engineer and members of the Project Engineer's staff responsible for staking should confer with the Contractor's foremen concerning the method of staking to be used, how stakes are to be marked and guarded, offsets to be used, spacing, etc. Information to be placed on stakes, abbreviations to be used, location of message on stakes, etc., should be carefully explained to avoid misunderstanding or misinterpretation.

- B. <u>Accuracy.</u> The degree of accuracy used in the various operations of construction surveying and staking is to be consistent with the use. Basic horizontal and vertical controls are to conform to recognized accuracies. Other construction stakes should be set to accuracies commensurate with their use. The accuracies and tolerances required for the various construction stakes as set out elsewhere in this chapter. Accurate and complete survey notes taken for future reference must be entered in the field notebook at the time the survey work is performed.
- C. <u>Relations with the Public.</u> Survey and staking personnel are to conduct themselves in the same manner as any other construction employee. Frequently, survey parties are more conspicuous to the passing public than other State employees on the project. To this extent, the public relations on the project may hinge on the appearance and conduct of the survey and staking personnel.

Even though the staking being done is for a construction project, it does not necessarily mean that final acquisition of all parcels of right-of-way has been accomplished. Many of the abutting

property owners have had their property and improvements altered or partially eliminated by our work. The manner in which we treat their remaining property may determine their permanent feelings toward the Department. For example, staking a driveway approach may be an extremely minor detail in the overall job activity, but to the individual property owner involved it may be the most vital aspect of the whole job.

D. <u>Safety</u>. Particular attention must be made to the safety of the survey crew in performing survey work, especially where the work is subject to traffic. The Party Chief is responsible for safe procedures on survey work and the party chief must insure proper use of safety measures, such as colored warning vests, warning devices, red flags, etc. See Chapter 6 of the MUTCDs for more information regarding traffic and safety.

10.2 CARE OF SURVEYING EQUIPMENT

A. <u>General.</u> The surveying instruments used by the survey party are precise and expensive. The retention of their value and the results of the work depend to a large degree upon the proper care and functioning of this equipment.

The care of equipment applies just as much to a hand level or a measuring tape as it does to surveying equipment. The net output of a party can be held up by a dull bush blade or a poor quality stake as much as an instrument that is difficult to set up. The degree of care that is required for precision instruments is obvious.

Field employees are not expected to take any instrument apart and clean and oil it except in cases which demand immediate attention. Field employees will be expected to keep clean the external parts of the instruments, such as leveling, clamp, and tangent screws. It may be necessary to make the simpler adjustments of the instruments from time to time to obtain proper results in their field work.

The Resident Engineer or party chief is to personally supervise any cleaning or adjustments of surveying equipment. Surveying instruments, when not in use, are to be kept in their respective boxes to exclude dust and to preserve the condition of the instruments.

Instruments must not be exposed to rain, snow, or rapid changes in temperature. They should not be unnecessarily exposed to intense sunlight. A hood or other cover should be used in emergencies to protect the instruments from the weather until they can be put in their cases. In the winter, care must be exercised to see that instruments are kept at as nearly a uniform temperature as possible. An instrument should not be taken suddenly from outside cold weather into a heated room, or vice versa, without wrapping it for protection so that the temperature of the instrument changes gradually.

B. Handling Equipment

- 1. All tripods used for any type of control work must be checked frequently to ensure that no loose connections exist at the head, shoe, or extension joint.
- 2. Check each leg one at a time by raising it slightly and applying a twisting action. Tighten any connection where movement is observed or felt.

- 3. Always place the tripod legs on solid ground even if it means spading away the grass and top layer of soil under each shoe. Covers should be kept on the head of all tripods to prevent scarring which will cause problems with centering and leveling.
- 4. Any tripod with a warped head should be replaced.
- 5. Instruments must be attached to the tripod to avoid damage. The attachment must be snug enough to hold without movement but not so tight as to stress the tripod head or tribrach.
- 6. Spread the legs of tripods far enough apart so that wind will not affect the instrument.
- 7. The tension on the legs at the tripod head should be adjusted to allow the legs to extend slowly.
- 8. All equipment including tripods should be free of mud before putting away for the day.
- 9. The optical plummet and circular level of tribrachs must be checked frequently and kept in good adjustment. Tribrachs must be carried in cushioned containers to maintain their adjustment.
- 10. Even though the tribrachs' circular bubble is kept in good adjustment, the more sensitive tubular bubble should be used for the final leveling for targets.
- 11. Tribrachs should be centered and leveled accurately enough to produce a maximum of one (1) mm eccentricity.
- 12. Targets should be selected that will not introduce phase error into the angle observations.
- 13. All prisms should be numbered and the prism constant determined for each.
- 14. The prism type and number should be recorded for each EDM distance observed.
- 15. Prisms should be kept clean to increase their effectiveness and in protective cases when not in use to prevent damage to the glass.
- 16. No lens or glass of any kind should ever be touched with the fingers. The moisture will damage the protective coating and reduce the effectiveness of the equipment.
- 17. All equipment should be kept as free of dust and moisture as possible. Remove dust with a soft camel hair brush. Allow wet instruments to air dry in the office. The moisture will migrate to the insides of the instrument and cause damage if left wet in the case.
- 18. Instruments should be carried in their carrying case. On very short moves, they may be allowed to remain on the tripod if carried in the vertical position.
- 19. Instruments transported in vehicles should be confined inside padded compartments.
- 20. Clamps should never be viced down but brought only to a snug pressure to prevent movement.
- 21. Never allow total stations to be pointed to the sun unless an objective filter is attached and a solar observation is in progress.
- 22. Never lean any piece of equipment against trees, vehicles or buildings where it can fall.

Fingers should be kept from the face of level rods to preserve the graduations. Rotating the rod 90 degrees will place them on the side and avoid damage to the graduated strip.

C. <u>Transporting Equipment</u>. Equipment loaded into vehicles for transportation should be carefully handled and placed to avoid damage. It is suggested that each piece of surveying equipment be inserted in cases, hanger or holder, installed in or on the transportation vehicle for that purpose, to

avoid rubbing against other objects. Special boxes should be installed in the vehicles to hold the instrument cases. If the instrument is to be transported only a short distance, it may be carried on the lap without putting it in its case. When transporting an instrument in this manner without casing it, care must be exercised to avoid any damage to the instrument. If it is not enough people in the party for a driver and a person to hold each instrument, the instruments are to be transported in their cases.

D. <u>Accidental Damage to Surveying Equipment.</u> Resident Engineers are charged with the responsibility and care of all equipment used by persons under their supervision. Repair costs in cases of inexcusable or avoidable accidents will be charged to the person(s) directly responsible. All accidents of any consequence involving damage to equipment must be fully and promptly reported to the Assistant District Engineer - Construction, who is to review the facts in each case and determine the responsibility and disposition of the repair or replacement charged.

10.3 CONSTRUCTION CENTERLINE

The first survey work on a project will be to establish or re-establish the construction centerline or control line. This line will conform to the construction centerline or other stationed control line shown on the plans, either of which may or may not be coincidental with the existing survey line. When errors are found in alignment data, they are to be corrected and shown on the project and final plans with reference to the plan line.

The construction centerline will be marked by stakes driven on line behind the point, with the station and plus station facing the zero station of the survey. If the line traverses a traveled way, centerline points will be referenced at right angles with the station and plus station numbers and the distance right or left marked on the side of the stake facing centerline. At the time the centerline is reproduced, or immediately thereafter, control points will be referenced so that the centerline can be readily reestablished when required. In general, referencing is recommended for the beginning and ending of curves, points of intersection, points on tangents at approximately 1,000-foot intervals, and points on long curves where visibility is restricted. It is good practice to reference often enough so that each point will "see" at least one other point.

There are various methods of referencing control points, the selection of which must be left to the judgment of the Project Engineer. The choice of method may be based on the terrain of the area, the area of the right-of-way to be disturbed by construction operations, or the use to which the land adjacent to the right-of-way is put. Reference points will be placed at locations with the least possibility of being disturbed during the construction period and from which it is possible to "reset" the centerline with a minimum of delay. The utility of the reference points after cutting or filling to final grades must be considered.

The permissible error of closure for horizontal and angular measurements shall be in accordance with the MDOT Survey Manual. It is essential that the transit be "double centered" at the beginning of use, adjusted if required, and checked often enough to insure proper adjustment.

Errors of closure, either in angle or distance, which would change design quantities should be promptly reported to the Project Engineer for proper disposition.

<u>Parallel Offset Lines.</u> It is often advantageous to run a line which is parallel to the survey centerline. This line may be used as an aid for the original staking of the project or as an aid in determining right angles for the taking of cross-sections.

- 1. Determine Offset Distance
 - a. Study the plan and cross-sections to determine the distance to offset the parallel line. The line should fall outside the limits of construction, but be close enough to the top of cut or toe of fill to be useful.
 - b. The offset distance will vary for different sections of the project, depending on the depth of the cut or fill.
- 2. Set Out Control Points
 - a. Using an instrument at the control points on the centerline (PCs, PTs, POCs, POTs), set out points at right angles to the centerline, at a distance equal to the offset of the proposed offset line.
 - b. If a hub with a tack in the top is used for this point, it may also serve as a control point tie for the centerline.

10.4 BENCH MARKS

A complete, tight and dependable set of bench marks is one of the most important items of a construction survey. A large portion of the pay quantities rely on elevations as the basis of measurement. A loose line of bench marks can be the basis of disagreement and claims.

The equipment used for this work shall be in good repair and adjustment. Instruments should be calibrated per manufacturer's recommendations. Each rod used should be checked for extended length and condition.

Before any staking involving elevations is done on the project, the bench marks shown on the plans will be checked for location and elevation. At this time, any bench mark that may be disturbed by construction will be re-established and any needed temporary bench marks will be set.

Bench marks will not be set on utility poles, which may become unstable. A spike or bolt driven into a pole can cause a serious safety hazard to individuals using the bench mark and to those charged with maintenance of the service.

10.5 SETTING RIGHT-OF-WAY STAKES

The right-of-way is to be staked on both sides of the centerline in accordance with the Right-of-Way plans prepared by the Roadway Design Division. At points where right-of-way markers are to be located, sufficient hub stakes with tacks or iron rods (1/2" or larger in diameter, 18" long) are to be set for placing markers at the points indicated on the plans. These stakes or iron rods are to be set and guarded to provide the correct information for positioning the marker and its orientation in accordance with the applicable plan standard.

Right and left of every station, and closer when deemed necessary, the right-of-way is to be marked with a standard flat stake showing the station number on the face side with the notation "R-W" and the distance from centerline on the reverse side.

10.6 STAKING LIMITS OF CLEARING AND GRUBBING

This portion of the construction staking will generally be among the earliest operations undertaken by the Contractor.

The specifications will provide that the work will be measured by one of the following methods:

1. <u>Area Basis.</u> The work to be paid for will be the number of acres and fractions thereof acceptably cleared and grubbed within the limits staked for clearing and grubbing by the Engineer. Areas not shown on the plans or not staked for clearing and grubbing will not be measured for payment. The limits of the areas to be cleared and grubbed are to be staked to exclude those areas not requiring clearing and grubbing. Areas not included for measurement of clearing and grubbing will be areas covered by existing roadway, cultivated fields, lakes, ponds, existing stream beds, and other areas on which there are only scattered small bushes.

The clearing limits will be staked as determined by the inspection of the design cross-sections allowing an extra width of at least five (5) feet between the slope stake and the clearing line. Sharp breaks in the width of the clearing line should be avoided and stakes should be adjusted accordingly. Clearing lines on the inside of curves and at intersections likewise should be given special attention to provide adequate sight distance when contract quantities and right-of-way limits permit. Culvert locations should be considered when staking clearing limits.

Distances will be measured to the nearest foot and stakes will be placed to clearly designate the intended limits. Intervals for placing stakes will be dependent on terrain and denseness of the foliage. Generally, spacings of 100 feet will be adequate. In areas of heavy timber, clearing stakes should be set to avoid leaving trees on the clearing line. Revisions of originally-staked distances which are required as the work progresses will be duly-recorded in the field notes.

2. <u>Lump Sum Basis</u>. In the event that measurements and payment for the work is by the lump sum basis, the limits of the work may be staked and notes kept the same as for the area basis set forth above. No calculation of areas is required unless changes were made in the right-of-way, in which case measurement is to be made as provided in Subsection 201.04 of the Standard Specifications.

10.7 FIELD DATA COLLECTION AND PROCESSING OF CROSS-SECTIONS

Collection of cross-sections and final earthwork quantities will be performed at the project office using Department approved software and the methods & procedures established in the latest version of the "<u>MDOT Survey Manual</u>" under the section titled "Quantity Measurements & Calculations, Construction Surveys". This manual is available in the Department's Roadway Design Division.

10.8 SETTING SLOPE STAKES.

Office Preparation of Notes. Prior to cross-sectioning and slope staking, the Resident Engineer should prepare slope stake books. The slope stake book will show the subgrade elevations of the centerline and each shoulder, considering the crown slope and super elevation, and the "constant" distance(s) to the subgrade shoulder line for fill sections and the "constant" distance(s) to a point on the back slope at the same elevation as the subgrade shoulder for cut sections. When books are prepared and grade computations performed properly, time may be saved during slope staking.

If the plans are provided with plotted cross-sections, the tentative location of the slope stake may be determined. The cross-sections will show the approximate cut or fill and the distance from centerline to the slope stake. It is helpful to make an entry in the slope stake book of the cut or fill and distance from centerline as shown on the section. These figures will only provide a fast reference for the first trial shot, and often the identical values are determined to fit the field conditions. These trial values provide a check of field work, since a wide variation in the trial shot and actual shot may be due to an error in computations or reading the rod.

<u>Slope Staking for Embankments</u>. Slope stakes for embankment sections are to be set at the toe of the slope and marked to show the vertical distance from the ground at the point where the stake is driven to the subgrade elevation for the shoulder line of the embankment. In setting slope stakes for embankment sections, the following method shall be used:

The slope stake shall be set by taking trial readings at right angles to the centerline until a point is found. The distance from the centerline is equal to the slope ratio times the fill from the ground at the point to the subgrade elevation of the shoulder, plus the distance from the centerline to the subgrade shoulder line.

The fill which is marked on the slope stake is to be the fill from the elevation of the ground at the point where the stake is set to the subgrade shoulder elevation.

<u>Slope Stakes for Cuts.</u> Slope stakes for cuts are the stakes set at the point of intersection of the back slope with the natural ground. They are to be marked to show the vertical distance or cut from the elevation of the ground at the point where the stake is driven to the elevation for the point on the back slope opposite the subgrade shoulder.

In determining the point at which to set the slope stake, it will first be necessary to determine the point at which the horizontal distance from the centerline to the point on the back slope opposite the subgrade shoulder, plus the quantity obtained by multiplying the cut by the backslope ratio, is equal to the measured distance from that point to the centerline. The slope stake is to be set at this point, and the cut from the elevation at this point to the elevation of the point on the backslope opposite the subgrade shoulder elevation is to be marked on the stake.

<u>Marking and Driving Slope Stakes</u>. The cut or fill should be marked on the front side (side facing the centerline) and near the top of the slope stake. The distance from the centerline to slope stake should be marked on the back of the stake. The backslope ratio should be marked on the edge of the stake.

Both vertical (cuts and fills) and horizontal distances should be shown to the nearest 0.1 foot.

Tan	gent Cor	stants:	Fill	22 ²			Date:		
			Cut	32 <u>7</u>			Party:		
Sta	Lt.Sh.		CL		Rt.Sh.] [
B.M.	7.08	322.50			315.42		N.I.S.20" Red Oa	ik 100' LT.	10+00
							-		
10			320.17 (GR 4 <u>5</u>		4 <u>5</u>
	318.00		318.67 (<u>SubGr)</u>	318.00		RR 6 <u>⁸</u>		0 <u>2</u>
							F 2 ³ 4:1		C 4 ³ 4:1
							31 <u>4</u>		49 ⁹
11			319.17				GR 5 ⁵		<u> </u>
	317.00		317.67		317.00	1	RR 8 ²		<u> </u>
							F 2 ⁷ 4:1		C 0 ⁰ 4:1
							33 <u>0</u>		32 <u>7</u>
							0.5.05		
12			318.17				GR 6 ⁵		6 <u>5</u>
	316.00		316.67		316.00		RR 10 ⁰		8 <u>8</u>
							F 3 ⁵ 4:1		F 2 ³ 4:1
T.P.	2.81	316.09	9.22	313.2 8			36 ²		32 <u>4</u>
							0.5. (1		. 1
13			317.17			┤╎	GR 1 ¹		<u>1¹</u>
	315.00		315.67		315.00		RR 5 <u>1</u>		3 <u>6</u>
							F 4 ⁰ 4:1		F 2 ⁵ 4:1
							38 ²		32 ²

10.9 STAKING SIDE ROADS AND PRIVATE ENTRANCES

Centerline and radius points should be established, cross-sections taken, and slope stakes set before grading operations are begun on county road turnouts. The centerline of the county road turnout should be intersected with the centerline of the project and the stations of each centerline and angle of intersection recorded so that the centerline of the turnout may be re-established for subsequent work, such as blue tops, final cross-sections, etc.

Ramps or private entrances should be constructed at the locations shown on the plans. Ramps or entrances shall not be changed from the-location on the plans unless a formal agreement is obtained from the property owner, for which procedures should be initiated through the Assistant District Engineer - Construction.

Radius points for ramps should be set so that the proper turning radii and correct width may be constructed for the ramps.

10.10 STAKING BOX BRIDGES, BOX CULVERTS AND PIPE CULVERTS.

<u>General</u> - Culverts and box bridges should be staked as soon as possible and the box culvert, box bridge, and pipe culvert list prepared. The revised structure lists should be forwarded to the Contractor as soon as possible to facilitate ordering construction materials. Delay in staking of pipes or boxes can cause a delay in the Contractor's operation, which may lead to a claim against the Department.

Box Culverts and Box Bridges - Before staking box culverts or box bridges, it is helpful to profile the stream or ditch in which the structure is to be built and then plot this profile on cross-section paper. For a stream or ditch which meanders appreciably within the probable limits of the structure, the profile should not be taken by measuring along the meander but should be taken along the proposed centerline of the structure with "side" shots in the ditch opposite measured points on the proposed centerline of the structure. A proper flow line for the structure can then be determined from this profile. A crosssection of the roadway should then be plotted over the flow line and the required length of the structure determined. In plotting the cross-section of the roadway, be sure to determine differences in shoulder elevations that may be caused by superelevation or skew angles. Box culverts or box bridges are normally to be constructed perpendicular to the centerline of the roadway or on skew angles of 15°, 30°, or 45°. If different skew angles are absolutely necessary, a special design box will be required. In staking box culverts and box bridges, hub stakes with tacks should be set on the parapet lines on each side of the centerline of the structures at a sufficient distance to prevent disturbance. Elevations should be taken on each hub and the cut to flow line computed. Each hub should be guarded with a flat stake bearing the notation "PARP LN" and offset from the centerline of the structure on the face side and the cut to flow line on the other.

See example notes for staking computation and sketches.

<u>**Pipe Culverts</u>** - Pipe culverts are to be located at the most practical, best-fit, field conditions. Where straightening of the channel is not provided for, the culvert should be located with respect to the existing channel so as to provide the most direct and unimpeded flow. Pipe culverts will often be shifted from the plan location to better fit flow conditions.</u>

When staking pipe culverts, the plan lengths and flow line elevations of the pipe should first be checked in the field and, if necessary, adjusted to fit field conditions. Flow line elevations of a pipe culvert will be based on the elevations of the natural flow line of the channel taken outside the limits of the proposed fill slopes so that a desirable uniform pipe gradient may be obtained through the embankment area.

After the length of the pipe has been determined as shown in the example notes, the gradient of the pipe should be computed and the grades of inlet and outlet offset stakes computed using this gradient.

Pipe culverts are staked by setting a hub and tack on the centerline of the culvert at an offset distance from each end of the pipe, sufficiently far from the construction operations to be safe from being disturbed. Elevations are taken on the top of the hub stakes. The guard stake will be marked with the length and size of pipe, cut or fill from hub to flow line at the hub and the distance to end of pipe.

Construction Manual

136' - 24" pipe	Station 318	8+66		Stak	ed 9-13	3-02	ABC	C - PC	
							BCL) - Instrun	nent
	Lt.		Rt.				CDE	- Rod	
Shldr. Grade	341.3		341.3				DEF	- Rod	
F.L.	319.6		325.1				EFG	G - Notes	
D + T	+2.2		+2.2						
	321.8		327.3						
Fill	19.5		14.0	GR	8.69			GR	1.59
3:1	58.5		42.0	RR	<u>8.75</u>			RR	<u>1.37</u>
1/2 Rdwy	20.0		20.0	F	0.06				C 0.22
	78.5		62.0						
less "C" (FES)	-2.5		-2.5						
	76.0		59.5	20	,	76.3'		59.7'	20'
Use	76.3		59.7				-0		
Slope = 5.5 / 1	36 = 0.040	4							
20' Offset	-0.8		+0.8						
0.S. F.L.	318.8		325.9						
B.M. 2.28	327.49	2.28	325.21	NIR	24" Re	d Oak i	75' Lt.	318+00	
O.S. Gr. Rod	8.69		1.59						
Laid 136' and J	2 FES 9-15	-02 JKL							

8 x 6 Box Culv	ert 30° ske	w Lt. Fwd.	Staked 9-13-02					
Station 318+6	6		ABC - PC					
			BCD - In	BCD - Instrument				
	Lt.	Rt.	CDE - R	od				
Shldr. Grade	320.61	322.42	DEF - Ro	od				
F.L.	310.40	31.10	EFG - No	otes				
	317.53	317.23						
Fill	3.08	5.19	GR 9.10					
3:1	9.24	15.57	RR <u>3.81</u>	GR 9.40				
+ Parapet	0.83	0.83	C 5.29	RR <u>4.20</u>				
1/2 Rdwy	20.00	20.00	<u>Р</u>	C 5.20				
	30.07	36.40	20'	 				
/ Cos 30°	34.72	42.03 <u>76.7</u> 5		42.80' 20				
			20' 34.72' 301+25					
				20				
B.M. 4.34	319.50	4.34 315.16	NIR 30" Hickory 100' Lt. 300+	-00				
F.L. Gr. Rod	9.10	9.40						

10.11 LAYOUT OF BRIDGES

It has been a statewide trend to provide in all construction contracts a pay item for bridge construction staking. Whether performed by the Contractor or by MDOT forces, the following shall be performed:

General. The Standard Specifications require only that the Engineer furnish the Contractor with centerline controls and bench marks for bridges. The specifications make the Department responsible for the accuracy of the stakes and bench marks at the time they are set by the Engineer, or the Engineer's representatives, and therefore extreme accuracy is essential. Except for centerline stakes and bench marks, the specifications required that the Contractor shall establish and maintain all other necessary controls. Contractor is responsible for the accuracy of the horizontal and vertical controls established by the Contractor, and the work performed from these controls.

It is the responsibility of Department personnel, to inspect all work performed by the Contractor, including any horizontal or vertical controls established by the Contractor.

In order to preserve the centerline points and bench marks established by the Engineer, and in order to properly inspect other controls established by the Contractor and the work performed from such controls, it is necessary that the Engineer establish sufficient reference points from which basis control points may be re-established and the Contractor's work adequately inspected and verified. All control points and reference points established by the Engineer should be checked.

Bench Marks. A good bench mark that is not likely to be disturbed should be established at each bridge site. It is desirable that this bench mark be referenced by at least one other bench mark in the same vicinity, such that both may be seen from the same setup so that one will verify the accuracy of the other. These bench marks should be thoroughly checked by tying into other bench marks used in the work and should be used to set all subsequent control elevations of the bridge work.

Checking. A thorough check of all measurements, angles and elevations should be made to insure that no error exists. The checking should, if possible, be done by persons other than those who did the original staking. If feasible, the checking should be done by different procedures. Reference points for centerline points should, if possible, be set at the same angles from centerline and at the same offset distance. This will provide a convenient method for checking skew angles and offset distances by measuring parallel to centerline through the offset stakes. There are many other ways within good engineering knowledge to verify the accuracy of layout work.

Never assume anything when staking a bridge and make certain the staking is correct. Insist that the Contractor provide and accurately maintain all working control points, such as for individual pile locations, cutoff elevations, form lines and grades, header grades, etc.

If ever in doubt, consult the plans, check dimensions on the plans for errors, and check your own controls and those provided by the Contractor.

10.12 SETTING GRADING STAKES, FINISHING STAKES AND PAVING STAKES.

<u>**Grade Stakes.**</u> In some instances, such as in an interchange area where site grading is indicated beyond the normal typical section, it may be necessary to provide the Contractor with basic grade stakes indicating the cut or fill and offset from the shoulder line and additional rough grading stakes in the area of the side grading.

These stakes will generally consist of standard flat stakes and will be set to rough line and grade only to the accuracy commensurate with the intended use.

Cut or fill from the ground at the stake and offset, if any, to the point of grade should be marked on the stake.

Finishing Stakes or Blue Tops. When the rough grading of the roadbed has been substantially completed, the Project Engineer should set finishing stakes (blue tops) at centerline and shoulders of the roadway at intervals of not more than 100 feet. On minimum width roadway sections, the stake at centerline may be eliminated. Closer intervals may be needed because of sharp changes in grade or alignment, widening or superelevation. Finishing stakes are generally to be placed at the required locations and driven so that the top of the stake is at the elevation of the finished grade of the pertinent earthwork. The grade foreman and motor patrol operator should finish the grade to very nearly that required before calling for blue tops. If blue tops are called for and the grade is found to consistently vary more than ± 0.3 of a foot, the Contractor should be called back to provide closer grading prior to setting blue tops.

Finishing stakes are also normally to be placed at the top of subgrade and base courses. In areas of critical drainage, staking must be provided to assure adequate slope. Ponding of water along embankments, in the roadway, or in the ditches must not be permitted.

Finishing stakes are to be set accurately to line, solidly driven, and guarded by the Contractor. Heights of Instrument (H.I.s) and grade rods are to be recorded to the nearest 0.01 foot and the top of the stake driven to the elevations of the grade at that point.

Paving Stakes. Stakes for paving should be set with extreme care. The centerline control points must be reproduced to provide alignment for the pavement. Before establishing horizontal and vertical controls, consult with the Contractor, in order that the controls may be set at offset distances convenient to the Contractor's proposed operations. Usually these controls are set two (2) or more feet from the edge of the pavement.

There are several suitable methods of setting paving grade stakes. One of the most accurate methods is to drive a 2 x 2 hub flush with the surface of the ground and provide the cut or fill (usually fill) to the elevation of the normal pavement edge. To do this, centerline control points are to be offset at right angles to the centerline and to the offset distance agreed on with the Contractor and driving a hub flush with the ground and marking the line with a tack. The offset tack line is then established at the required intervals for line and grade by actually running the line using the same deflections on curves as for centerline and using adjusted cord lengths as set out in Section 10.3. The line should be established with 2 x 2 hubs driven flush with the ground and using a tack in each hub.

This offset tack line is to be used for control of pavement alignment and for grade references on that side of the pavement.

After the offset tack line is established, a very convenient method of setting the offset grade line on the opposite side of the pavement is by use of two tapes simultaneously, one measuring normal to the roadway from the tack point and the other measuring the computed diagonal distance from the tack point behind to the appropriate offset distance on the other tape. The 2×2 hub should be driven flush with the ground at the point thus established. It is to be noted that on tangents, the diagonal distance measured should be a constant distance. For circular curves, the diagonal distance must be computed

for each degree of curvature. For spiral curves, it may be more convenient to establish the offset grade point opposite the tack line points using a surveying instrument.

A desirable and accurate method for providing the Contractor with precise grade information is to turn through the project, recording accurate level shots on all bench marks and all grade hubs at the same time and being sure that the respective shots right and left on the grade hubs are recorded to the hundredth right and left in the field notebook. These notes can then be taken to the office to serve as a final line for check levels. If found to be accurate, the cut or fill from the hub to the pavement edge elevation can be computed by calculator and recorded in the field notebook adjacent to the rod reading.

Then one person may go to the field and mark on the face side of the guard stake the cut or fill to grade and on the back side of the guard stake, mark the station number. If it is practicable to reproduce the notes establishing these grades, a copy should be furnished to the Contractor in case a guard stake is destroyed or a question arises as to the proper reference marks on the stake.

As stated above, there are other accurate methods of providing line and grade. However, driving stakes such that the top of the stake is at the elevation of the paving grade is not desirable because of the susceptibility of such stakes being struck by equipment or posing a hazard to personnel. For widening and overlays where traffic is required to be maintained, such method may pose a hazard to traffic.

Unless planned equipment and proposed Contractor's operations would justify otherwise, all paving stakes should be set at 25-foot intervals. All grades for pavements are to be provided to the nearest 0.01 foot.

10.13 STAKING MANHOLES, CATCH BASINS AND INLETS

Manholes, catch basins, and inlets are usually constructed before any curb or curb and gutter operations start on a project. For this reason, extreme care should be exercised in staking so that they will fit properly into the design of the road. The castings are usually adjusted to the required elevation after the curb and gutter forms are set.

Position of manholes, catch basins, and inlets is usually fixed by the straddle hub method with a grade hub offset such distance as to protect it from disturbance. Guard stakes at the straddle hubs should indicate clearly the portion of the structure staked and the distance thereto. The guard stake at the grade hub should give the cut or fill to the top of the structure, the cut or fill to the flow line, and the distance to the point on the structure to which these grades refer.

On projects where there is a considerable number of manholes, catch basins, and inlets to be constructed, separate field books may be necessary for each type of the work. Separate pages, as needed, are to be used for each structure. For each structure, the field book should show the location, type, and size, with a staking diagram showing all distances and pertinent elevations, date staked, and the staking party.

10.14 STAKING UNDERDRAINS AND SEWERS

For relatively short and straight lines of underdrains and sewers, a procedure similar to that used in providing controls for culverts may be used in establishing the alignment and flow line.

The flow line elevation of sewers and underdrains must conform to those of any existing drains to which they must be connected and should provide for adequate outlet.

Underdrains should be staked at elevations established by and conforming to the grades and typical sections indicated on the plans and structures to which they must be connected.

Lines of underdrains and sewers having considerable length or changes in alignment may be made by an offset control line run parallel to the centerline of the structure and at a convenient offset distance which will insure permanency of the control stakes during construction operations.

Unless the equipment and operations proposed to be used by the Contractor justify otherwise, control grades should be set at intervals of not greater than 25 feet. All grade stakes are to be set reflecting a grade to the nearest 0.01 foot.

10.15 STAKING CHANNEL CHANGES AND DITCHES

This work is generally indicated as Unclassified Excavation. In some cases, the item of Channel Excavation may be indicated in the contract, with the material to be disposed of outside of the highway right-of-way. In certain cases, Channel Excavation may be reclassified as Unclassified Excavation as provided in Subsection 203.04.1.

In either case, the site from which the excavation is to be made will require slope staking and crosssectioning, if measurement for payment is to be made by the F.M. method.

Normally, the plans will show the typical section to be used for the construction of channels and special ditches. If a typical section is not indicated on the plans, the channel or ditch should be of sufficient dimensions to accommodate existing field conditions and requirements.

10.16 STAKING CURB, CURB & GUTTER, SIDEWALKS, GUARD POSTS & GUARD RAIL

Stakes for curb, curb and gutter and/or sidewalk forms are to be set with an instrument to the alignment and grade shown on the plans or established. Stakes should be set at full and half stations on tangents, 25 to 50-foot intervals on horizontal curves and not greater than twenty-five (25)-foot intervals on vertical curves. Usually, curb returns and sidewalk radii can be staked using a tape or ruler.

Except for instances where controls are established by existing construction, accurate alignment and grade, correct to the nearest 0.01 foot, is to be established using an offset line of tacked hubs generally behind the form line. Final position of the forms should be checked visually by sighting along the form in both directions. In the event pouring is delayed appreciably, the forms should be thoroughly checked for line and grade prior to use.

A field book is to be maintained indicating a staking diagram for detached structures, with respect to centerline, and is to be used during placement, showing dates and locations of pours, staking party members and initials of party member(s) making measurements for payment.

Guard rail and guard post locations will be indicated on the plans with special installation features indicated on standard sheets or other drawings.

Sufficient line stakes with tacks are to be set at intervals sufficient to properly establish the guard rail alignment. The point of beginning and ending of guard rail should be shown on the plans. For specific criteria, see the standard sheets. Stakes may be graded for the top of rail or the bolt hole, whichever is desired. Location of guard rail for signs, pier protection, etc. is generally specified on the plans or standard sheets. Check with the Contractor to determine the Contractor's method of operation so that

the stake location will not conflict with the necessary positioning of the Contractor's equipment and to determine that the Contractor and the Inspector both thoroughly understand the information contained on the stakes.

Guardrail terminal end sections must be staked and installed per manufacturer's recommendations.

10.17 NOTES, RECORDS AND PARTY CHIEF'S REPORT

All field notes recording the layout and measurement of construction are to be made in standard bound field notebooks or cross-section books, as applicable. These books are permanent source documents and may be referred to by others.

Notes must be neat, legible, precise, and sufficiently detailed to convey their intent to anyone not familiar with the project.

Erasures of errors in field notes are unacceptable. A line must be drawn through those portions of notes in error (leaving the original note legible) with corrections noted directly above and initialed where quantity measurements are involved.

All field notebooks are to be identified on the outside of the front cover indicating project number, book number, and content. Each page of the book should be numbered in the upper outside corner of the page. Each book should be indexed and its content referred to by page numbers. One or more sheets should be reserved at the front of each book for indexing.

The date, weather conditions, and party personnel are to be shown at the beginning of each day's notes. As a general rule, field notes for each phase of the work should be placed in a separate series of field books. Under certain conditions, it may be feasible to combine minor items into one or more "Miscellaneous" books, with adequate index coverage.

10.18 PARTY CHIEF'S DAILY REPORT - FORM CSD-603

It is essential that the daily activities of Project Office personnel working on construction projects be adequately documented. Form <u>CSD-603</u> is to be used to record the activities of those personnel engaged in the construction surveying phases of the work.

Each Party Chief is to keep a factual daily account of all work performed by the construction survey party. The back of each sheet may be used for additional names and information or additional sheets may be used, if necessary. If the back of the sheet or additional sheets are used, make an appropriate note at the bottom of each sheet referring to such additional information on the back or additional sheet(s) for that daily report.

The form is also to be used to record preliminary engineering activities.

10.19 AUTOMATED MACHINE GUIDANCE

In lieu of conventional staking, the Contractor may elect to use Automated Machine Guidance (AMG) technologies and systems in accordance with the specifications and contract documents. AMG is defined as the utilization of positioning technologies such as Global Positioning Systems (GPS), Robotic Total Stations, lasers, and sonic systems to automatically guide and adjust construction equipment according to the intended design requirements. The Contractor may use any type of AMG system(s) that result in compliance with the contract documents and applicable specifications.

AMG, conventional staking, or a combination of both may be used at the Contractor's option for staking.

<u>AMG Work Plan</u>. The Contractor will submit a comprehensive written Automated Machine Guidance Work Plan to the Engineer for review. The submittal of a AMG Work Plan shall be an indication of the Contractor's intention to utilize AMG instead of conventional methods on the project areas and elements stated in the Work Plan. The Engineer will review the Automated Machine Guidance Work Plan. Any updates or alterations of the AMG Work Plan in the course of the work will also be reviewed and approved.

The Contractor will provided training to MDOT personnel on the utilized AMG system.

<u>State's Responsibilities</u>. MDOT will set primary horizontal and vertical control points in the field for the project as per latest edition of the MDOT Survey Manual. The control points will be in Mississippi State Plane coordinate system.

MDOT will provide an electronic alignment file and primary control file for the project. The Contractor will perform necessary conversion of the files for their selected grade control equipment, field verify the data for accuracy, and immediately report any errors to MDOT.

MDOT will provide design data, if available, in an electronic format to the Contractor. No guarantee is made to the data accuracy or completeness, or that the data systems used by MDOT will be directly compatible with the systems used by the Contractor.

The Engineer will perform spot checks as necessary of the Contractor's machine control grading results, surveying calculations, records, field procedures, and actual staking. If the Engineer determines that the work is not being performed in accordance with the Specifications, the Engineer shall order the Contractor to re-construct the work to the requirements of the contract documents at no additional cost to the Department.

The Engineer will verify the in-field grades established by the Contractor by the use of GPS technology at random locations on the project. The Engineer will check the grades at variable intervals to assure that the roadway is being constructed in accordance with the plans.

<u>Contractor's Responsibilities.</u> The Contractor shall provide formal training, if requested, on the use of the Automated Machine Guidance Equipment and the Contractor's systems to MDOT project personnel prior to the start of construction activities utilizing AMG. This training is for providing MDOT project personnel with an understanding of the equipment, software, and electronic data being used by the Contractor.

The Contractor will establish secondary control points at locations along the length of the project and outside the project limits and/or where work is performed beyond the project limits as required by the Automated Machine Guidance system utilized. The Contractor will establish this secondary control using survey procedures as outlined in the latest edition of the MDOT Survey Manual. A copy of all new control point information will be provided to the Engineer prior to construction activities. The Contractor will be responsible for all errors resulting from their efforts and shall correct deficiencies to the satisfaction of the Engineer and at no additional cost to the State.

The Contractor is responsible for preserving all reference points and monuments that are established

by the District Surveyor outside the construction limits. If the Contractor fails to preserve these items, they shall be re-established by the Contractor to their original quality at no additional cost to the State.

The Contractor will set grade stakes at the top of the finished sub-grade and base course at all hinge points on the typical sections at 2000-foot maximum intervals on mainline, critical points such as, but not limited to, PC's, PT's, beginning and ending super elevation transition sections, middle of the curve, and at least two locations on each of the side roads and ramps, and at the beginning and end of each cross slope transition where Automated Machine Guidance is used.

ABBREVIATIONS & SYMBOLS

Absorbed Haul Abutment Acre and Acres Ahead Alternate spaces Aluminum And Approximately Asphalt At Auxiliary Average daily traffic	A.H. Abut. Ac. Ah. Alt. Spa Alum. & Approx. Asph. @ Aux A.D.T.
B Back Back-to-back Base line Batter Beam Bearing Begin Beginning of project Beginning of survey Benchmark Best Management Practices Bituminous Bituminous coated corrugated metal pipe Bottom Bridge Building	Bk. BB. BL Batt. Bm. Brg. Beg. B.O.P. B.O.S. B.M. B.M.P. Bit. B.C.C.M.P. Bot. Br. Bldg.
C California bearing ratio Centerline Center of mass Center-to-center Cement Cement composition Channel Change Class Concrete Connection	C.B.R. C∟ C.M. c.c. Cem. Cem.Comp. Ch.Ch. Cls. Conc Conn.

Construction Continued Continuous Continuous reinforced cement concrete Contractor Corner Corporate Correction Corrugated Corrugated metal pipe County Course Creosote Cross-over Crown (normal crown slope x lane width) Cubic feet (quantities) Cubic feet (fluids, etc.) Cubic feet per second Cubic yard (quantities) Cubic yard (fluids, etc.) Cubic yard (fluids, etc.) Cubic yard (fluids, etc.)	Const. Cont'd. Cont. C.R.C.C. Cort. Corp. Corr. Corru. C.M.P. Co. Cse. Creo. x-over C.R. C.F. Ft. ³ C.F.S. C.Y. Yd. ³ Culv. C.S.
D	D
Degree of curve (circular)	Dc
Degree of curve (spiral)	△
Delta	△
Delta of curved (spiral)	C
Delta of spiral (spiral)	△s
Design hour volume	D.H.V.
Design speed	V
Detail	Det.
Diameter	Dia.
Diameter (in bar schedule)	Dia.
Diameter of bend	Diaph.
Diameter of bar	Diaph.
Diaphragm	Dim.
Dimensions	D
Directional distribution (% of traffic)	Dt.
Ditch	Dbl.
Double	D.B.S.T.
Double bituminous surface treatment	D.S.
Down stream	D.A.
Drainage Area	Dwg.
Drawing	Dr.
Drive	Dr.

<u>E</u>

<u>E</u>	
Each	Ea.
Easement	Ease.
Electrical	Elec.
Elevation	Elev.
Embankment	Emb.
Encasement	Enc.
End of project	E.O.P.
End of survey	E.O.S.
Equal	Eq.
Equation	Equa.
Erosion Control Plan	E.C.P.
Estimated	Est.
Excavation	Exc.
	-
Expansion	Exp.
Expansion material	Exp. Mat'l.
Extension	Exten.
External	Ext.
F	
<u>F</u>	
Face-to-face	FF.
Final measurement	F.M.
Finish	Fin.
Finished grade	Fin.Gr.
Fire hydrant	F.H
Fixed	Fix.
Flared end section	F.E.S.
Flow line	FL
Feet and foot	Ft.
Forward	Fwd.
Frontage	Fr.
Furnish	Furn.
_	
G	-
Gage	Ga.
Gallon	Gal.
Galvanized	Galv.
Grade	Gr.
Ground	Grnd.
Group	Gp.
Н	
Headwall	Hdwl.
Height	Ht.
Hexagonal head	Hex. Hd.
High strength	H.S.
High Water	<u>H.W.</u>
Highway	Hwy.
	2

Hook Horizontal Hot Mix Asphalt	Hk. Hor. HMA
Including Inside diameter Interchange Intermediate Intersection Interstate Invert	Incl. I.D. Intch. Int. Intrs. I. Inv.
<u>J</u> Joint Junction	Jt. Jct.
<u>K</u> Kips per square foot	K.S.F.
L Lane Left Left forward Length Length of curve (circular) Length of curve (spiral) Length of skewed culvert Length of spiral Linear Linear foot Longitudinal Long tangent Loose vehicle measure Lump sum	Ln. Lt. Fwd. Lgth. L c L S K L s Lin. L.F. Long. L.T. LVM L.S.
M Manhole Material Maximum Medium line Medium Miles Miles Miles per hour Minimum Modified Municipal	M.H. Mat'l Max. ML Med. Mi. M.P.H. Min. Mod. Mun.

<u>N</u> Nail-in-root Nail-in-side Normal crown Number	N.I.R. N.I.S. N.C. No.
O Opposite Ordinate Original Ounce Outside diameter Out-to-out	Opp. Ord. Orig. Oz. O.D. O-O
PPavementPavement widthPerforatedPermissiblePlacePlatePoint of curvePoint of intersectionPoint of vertical tangentPoint of vertical intersectionPoint of vertical intersectionPoint of vertical intersectionPoint of vertical intersectionPoint on curvePoint on subtangentPoint on tangentPopulationPoundsPounds per cubic foot (quantities)Pounds per square foot (fluids, etc.)Pounds per square foot (fluids, etc.)Pounds per square inch (quantities)Pounds per square inch (fluids, etc.)Pounds per square inch (stress)PresentPresentPrestressedProjectProjectionProperty line	Pave. P.W. Perf. Permis. PL PL P.C. P.V.T. P.V.T. P.V.C. P.V.I. P.O.C. P.O.S.T. P.O.S.T. P.O.T. Pop. Lb. Lb./C.F. Lb./Ft. ³ Lb./S.F. Lb./Ft. ² Lb./S.I. Lb./Ft. ² Lb./S.I. Lb./In. ² p.s.i. Prest. Proj. Proj'n PL

<u>**Q**</u> Quantity

Quan.

R Radius Railroad Reinforced Reinforcement Reinforcing Remove Required Reverse crown Revised Right Right forward Right-of-way Road Roadway Round Route	R R.R. Reinf. Reinf. Rem. Req'd R.C. Rev. Rt. Rt. Rt. Fwd. ROW Rd. ROW Rd. Rdwy. Ø Rt.
S Sanitary Section (typical or cross-section) Section line Selected Sheet Shoulder Skew Slope Soil cement water mix Space Special design Special provision Specifications Spiral to curve Spiral to tangent Square Square inch Square foot Square foot Square yard Standard Station Station yard Straight Street Stress relieved Structure Structure	San. Sect. Sec SL Sel. Sh. Shidr. Sk. Sl. S.C.W.M. Spa. Spec. Des. Spec. Des. Spec. Prov. Specs S.C. S.T. Sq. S.T. Sq. S.I. or In. ² S.F. or Ft. ² S.F. or Ft. ² S.Y. or Yd. ² Std. Sta. Sta. Sta. Sta. St. Str. St. St. St. St. St. St. St. St. St. St

Superelevation Supplements Surface, surfaced and surfacing	Super Supp. Surf.
Survey Symbol Symmetrical	Surv. Sym. Symm.
<u>T</u> Tangent Tangent to spiral Telephone Temporary Thickness Timber Transverse Truck Trucks (% of traffic) Typical	Tan. T.S. Tel. Temp. Th. Tim. Trans. Trk. T Typ.
U Underdrain Unstable material Untreated Upstream Unit	Undrn. U.M. Untr. U.S. U.
⊻ Variable and varies Vertical Vertical curve Volume	Var. Vert. V.C. Vol.
W Warm Mix Asphalt Water Water meter Water valve Wearing Weight With Working point Working number	WMA W. W.M. W.V. Wear. Wt. Wt. W.P. W.P. W. No

Mississippi Department of Transportation **FORMS**

The forms shown in this Manual are completed examples of forms commonly used in administration of a construction project. This is not an all-inclusive list of every form that may be required. For forms not generated by SiteManager, a blank copy of the fillable pdf or Workbook can be obtained through download by clicking the form number on the example page or in the table below.

FORM DOWNLOAD TABLE

Form No.	Form Name	Form Type	Page
(Click to			(Click for
Download)			Example)
BRD-203	Final Pile Report	Spreadsheet	<u>F-2</u>
BRD-601	Pile Report	Spreadsheet	<u>F-3</u>
BRD-761	Test Pile Report	Spreadsheet	<u>F-4</u>
<u>CAD-12</u>	Report of Deductions and Incentive Payments	Spreadsheet	<u>F-5</u>
<u>CAD-40</u>	Bulletin Board Requirements	Spreadsheet	<u>F-6</u>
CAD-230	Truck Volume Calculations	Spreadsheet	<u>F-7</u>
<u>CAD-240</u>	Tack Coat and Prime Coat	Spreadsheet	<u>F-8</u>
<u>CAD-250</u>	Bar List Workbook	Spreadsheet	<u>F-9</u> -11
<u>CAD-280</u>	Asphalt Deductions	Spreadsheet	<u>F-12</u>
<u>CAD-440</u>	Labor Questionnaire	Fillable PDF	<u>F-13</u>
CAD-724	Liquidated Damages	Fillable PDF	F-14
<u>CAD-900</u>	Checklist for Submission of Final Data	Fillable PDF	<u>F-15</u> ,16
<u>CSD-001</u>	Force Account (Initial)	Spreadsheet	<u>F-17</u>
<u>CSD-202</u>	Force Account Statement of Extra Work Performed	Spreadsheet	<u>F-18</u>
<u>CSD-203</u>	Fertilizer Required	Fillable PDF	<u>F-19</u>
<u>CSD-481</u>	Report of Bituminous and Vegetative Material Applied	Fillable PDF	<u>F-20</u>
<u>CSD-601</u>	Project Engineer's Affidavit	Fillable PDF	<u>F-21</u>
<u>CSD-603</u>	Party Chief's Report	Fillable PDF	<u>F-22</u>
CSD-720	Class I Supplemental Agreement	Site Manager	<u>F-23</u> -27
CSD-720	Class II Advance Authority	Site Manager	<u>F-28</u> -31
CSD-720	Class II Supplemental Agreement	Site Manager	<u>F-32</u> -37
CSD-720	Class III Supplemental Agreement	Site Manager	<u>F-38</u> -42
<u>CSD-723</u>	Report of Seed Applied	Fillable PDF	<u>F-43</u>
<u>CSD-724</u>	Surface Treatment Report of Material Applied	Spreadsheet	<u>F-44</u>
<u>CSD-761</u>	Traffic Control Inspection Report	Fillable PDF	<u>F-45</u> ,46
<u>CSD-762</u>	Contractor's Traffic Control Inspection Report	Fillable PDF	<u>F-47</u> ,48
CSD-765	Assessment Report for Available Working Days	Site Manager	<u>F-49</u>
<u>CSD-770</u>	Edge Drain Inspection Report	Fillable PDF	<u>F-50</u> ,51
<u>CSD-780</u>	Erosion Control and Sediment Report	Fillable PDF	<u>F-52</u> -54
<u>CSD-880</u>	Fuel Price Adjustment	Spreadsheet	<u>F-55</u>
<u>CSD-881</u>	Material Price Adjustment	Spreadsheet	<u>F-56</u>
	MRI Pay Adjustment Template	Research	<u>F-57</u> -58
<u>OCR-482</u>	Certification of Payments to Firms	Fillable PDF	<u>F-59</u>
<u>OCR-483</u>	Commercially Useful Function	PDF	<u>F-60</u>
<u>OCR-484</u>	Certification of Payment to Subcontractors	Fillable PDF	<u>F-61</u>
<u>TMD-125</u>	Daily Report of Chemical Stabilization	Spreadsheet	<u>F-62</u>
<u>TMD-522</u>	Field Density Report for Embankments	Fillable PDF	<u>F-63</u>
<u>TMD-524</u>	Structural Backfill, Subbase, Base and Shoulders	Fillable PDF	<u>F-64</u>

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Page 1 of 1

Jackson, Mississippi

FINAL PILE RECORD

Project No.: BR-0048-01(019) / 301301-301

County: Monroe

SUMMARY OF

Bridge "A" 12 x 53 Steel

PILING

(Fill In Size and Type Used)

1	2	3	4	5	6	8	9
Bridge	Station	Recommended Length (Plan Quantity)	Gross Length (Final Appoved Installed Quantity)	Cut-off	Final Pay Length	No. Test Piles	No. Load Test
Bent 1	1019+44.21	550.00	550.00	0.00	550.00	0	0
Bent 2	1019+84.21	275.00	271.00	4.00	273.40	1	0
Bent 3	1020+84.21	330.00	325.80	4.20	328.32	0	0
Bent 4	1021+84.21	660.00	660.00	0.00	660.00	0	0
Bent 5	1022+84.21	605.00	594.90	10.10	600.96	1	0
Bent 6	1023+64.21	360.00	327.70	32.30	347.08	0	0
Bent 7	1024+04.21	550.00	547.20	2.80	548.88	0	0
Bent 8	1024+44.21	600.00	619.40	0.00	619.40	0	0
	Totals	3,930.00	3,896.00	53.40	3,928.04	2	0

NOTES:

NOTE: List pile length to nearest tenth foot.

If provided piles are in excess of approved lengths, any cut-off in excess of approved lengths shall be deducted at 100%.

Do not fill in column 3 for untreated timber piles.

REMARKS:

Project Engineer:

Date:

Construction Manual

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Page 1 of 1

Jackson, Mississippi

PILE REPORT

					Office V	Vorksheet							
Bridge Nu	umber			Bridge A			Project No.		100579/30100	00			
Station N	umber			17+14.05			County						
Hammer	Make/Mo	del	C	elmag D30-	32		Ram Weight		6015				
Pile Type	/Size		, ,	Steel HP12x5	53	Cushion Type	/Thickness		N/A				
F													
	D DIAGRAM IG OR BENT												
Bent No.	Pile No.	Gross	Cut Off	Length In	Penetration In	Final Set	of Pile	*Achieved	Date Driven	Identification			
		Length (feet)	(feet)	Place (feet)	Ground (feet)	Blow Count	Hammer	Minimum Driving		Number			
		(leet)		(ieet)	(leet)	(blows per ft)	Stroke (ft)	Criteria (Y/N)					
B1	P1	60.00	0.00	59.00	9.00	9	7	Y	8/8/2016	451729			
B1	P2	60.00	0.00	59.00	9.00	9	7	Y	8/8/2016	451729			
B1	P3	60.00	0.00	59.00	10.00	10	8	Y	8/6/2016	452911			
B1	P4	60.00	0.00	59.00	8.00	8 8		Y	8/6/2016	451728			
B1	P5	60.00	0.00	59.00	8.00	8 8		Y	8/6/2016	451732			
B1	P6	60.00	0.00	59.00	8.00	8	7	Y	8/8/2016	452904			
B1	P7	60.00	0.00	59.00	10.00	10	8	Y	8/19/2016	423188			
B1	P8	60.00	0.00	59.00	11.00	11	9	Y	8/20/2016	423188			
B1	P9	60.00	0.00	59.00	12.00	12	9	Y	8/19/2016	423202			
B1	P10	Т	E	S	Т	Р	I	LE	8/20/2016				
B1	P11	60.00	0.00	59.00	9.00	P I 9 9		Y	8/20/2016	423202			
B1	P12	60.00	0.00	59.00	10.00	10	7	Y	8/20/2016	423202			
B1	P13	60.00	0.00	59.00	6.00	6	5	Ν	8/19/2016	4231903			
B1	P14	60.00	0.00	59.00	8.00	8	8	Т	8/20/2016	439759			
B1	P15	60.00	0.00	59.00	8.00	8	9	Т	8/20/2016	439759			
SHEET	TOTALS	840.00	0.00	826.00									
				*Mi	nimum Requi	red Driving Crite	eria						
	er Stroke ft)	5	5.5	6	6.5	7	7.5	8	8.5	9			
								•					

Remarks:

Min. Blow Count

9 Restrike on B1/P13 on 8/20/15. Achieved bearing with 5 blows in 3"

*Driving Criteria determined by Geotechnical Branch based on PDA testing and submitted to Project Engineer through Bridge Division. If a pile does not satisfy driving criteria as it approaches cutoff, driving should stop one foot above cutoff and a restrike performed as directed by Bridge Division.

Copies to: Bridge Engineer, District Engineer, State Geotechnical Engineer Attach Originals To Form BRD-203

10

Submitted by:

8

Date:

8

7

Construction Manual

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Page 1 of 1

Jackson, Mississippi

TEST PILE REPORT

Date:	August 1	7, 2016	Project No.:	EXB-2902-00(011) / 102533 301	County:	Clarke
Test Pile No.:	Bent 6,	, Pile 3	Bridge No.:	135.8 "A"	Br. Sta. No.	688+26.
Location of Test Pi	le:	3rd pile f	rom left end, Sou	th (1st) row looking up station	_	
Length of Pile (fee	t):	45		Pile Size and Type:		HP 12x53
Make & Model of	Hammer:	Delmag D30-32		Ground Surface Elev	v. (feet):	259.21
Ram Weight (lbs):		6610		Pile Cushion Size and Type:		2" Teflon

NOTE: Record tip elevation at end of each foot or fraction thereof.

Elevation of Pile	Total Pile	Energy per	Hammer Ram	Blows per Foot	Average	Remarks
Тір	Penetration (ft)	Blow (lb.ft)	Stroke (Feet)	Penetration	Penetration	
					per Blow	
					(Inch)	
232.69	26.52	39,660	6.00	10.00	1.20	
231.69	27.52	39,660	6.00	9.00	1.33	
230.69	28.52	39,660	6.00	9.00	1.33	
229.69	29.52	39,660	6.00	11.00	1.09	
228.69	30.52	39,660	6.00	12.00	1.00	
227.69	31.52	42,965	6.50	16.00	0.75	
226.69	32.52	46,270	7.00	19.00	0.63	
225.69	33.52	46,270	7.00	16.00	0.75	
224.69	34.52	46,270	7.00	20.00	0.60	
223.69	35.52	46,270	7.00	18.00	0.67	

Remarks:

Submitted By:_____

Title:

Date:_____

Submit Original to Bridge Engineer

F-4

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

REPORT OF DEDUCTIONS INCENTIVES AND OTHER ADJUSTMENTS TO CONTRACT FOR FINAL ESTIMATES

PROJECT NUMBER: MASTP-0032-01(022) / 301000

COUNTY(S): Hancock

NOTE: IDENTIFY AND ATTACH SUPPORTING DATA FOR ANY AND ALL INCENTIVES AND DEDUCTIONS TO BE MADE TO THE FINAL ESTIMATE. IF NO CHARGES TO BE MADE TO THE ITEMS LISTED, STATE "NO CHARGES"

ANY AND ALL DEDUCTIONS OR INCENTIVES SHOULD BE LISTED ON THIS REPORT

ITEMS	\$ AMOUN	Т
TESTING	NO CHARGES	
ASPHALT PENALTIES	\$	15,160.00
LANE CLOSURE CHARGES	NO CHARGES	
QA/QC CONCRETE DEDUCTIONS	NO CHARGES	
SIGN REPLACEMENT	NO CHARGES	
ASPHALT SMOOTHNESS PENALTY/INCENTIVES:	NO CHARGES	
OTHER DEDUCTIONS AND/OR INCENTIVES (LIST BELOW)		
STATE PERFORMED TRAFFIC CONTROL	\$	2,350.00
LIQUIDATED DAMAGES	\$	600.00
FINAL FUEL ADJUSTMENT (Must be computed by Final Plans)	\$	(1,300.34)
INTEREST (Must be Computed by Final Plans)	NO CHARGES	
LEGAL SETTLEMENTS (Include a copy of settlement)	NO CHARGES	
Total	\$	16,809.66

Project Engineer:

Date:

CAD-40 rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

BULLETIN BOARD REQUIREMENTS

Prime Contractor: Project Number:

Date Inspected:

County:

	Sup't	
	Traffic Respons Altern.	
Letters	Traffic Respons Person	
Let	Safety Officer	
	Liason Safety Officer Officer	
	EEO Liason Officer Officer	
Miscellaneous	EEO Policy	
Miscell	Wage Rates	
	EMPLOYEE RIGHTS Labor Rel.	
	EEOC USERRA RIGHTS RIGHTS Gov Cont. Labor Rel.	
	USERRA	
	EEOC	
	OSHA 3165	
Posters	WH 1321	
	WH 1420	
	WHD 1088	
	WH 1284 WH 1462	
	WH 1284	
	FHWA 1022	

WH 1462 = Employee Polygraph Protection Act WH 1284 = Notice to Workers with Disabilities FHWA 1022 = Notice of Federal Aid Project

WHD 1088 = Employee Rights under the Fair Labor Standards Act

Phone Numbers

Responsible Person Traffic

Ambulances

Hospitals

Physicians

Responsible Person Traffic

Control

Control Alt.

WH 1420 = Family and Medical Leave Act of 1993

WH 1321 = Notice to All Employess Working on Federal or Federally Financed Construction Projects OSHA 3165 = You Have a Right to a Safe and Healthful Workplace. IT'S THE LAW

EEOC= Equal Employment Opportunity is THE LAW (Blue and Red)

USSERRA = Your Rights Under USERRA The Uniformed Services Employment and Reemployment Rights Act EMPLOYEE RIGHTS Gov. Cont. = Employee Rights on Government Contracts

EMPLOYEE RIGHTS Labor Rel. = Employee Rights under the National Labor Relations Act

The following must be included for all subcontractors performing \$10,000.00 or more on the project.

Cuperaturation	EEO	EEO EEO Safety	Safety
	Policy	Officer	Officer

Notes:

Inspected By:

Construction Manual

Page 1 of 1

_	_	
C	0	
C	V	
÷.,		
٢	ב	
<	1	
¢	5	

rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

	Remarks														
	Pay Volume		22	26	10	26	19	26							
		R				0.5		1							
		D_4	0.71												
7		D_3	2.08	4		3.5		4							
LATION		D_2	5		2.3	3.5	3.8	4							
CALCU		D_1	0.83	4	1.8	4	1	4							
LUME	ions	W_4	4.5												
ΑΥ ΛΟ	Truck Dimensions	W_3	2.25	2.5	2	1.5		2							
TRUCK PAY VOLUME CALCULATION	Truch	W_2	5.33	2	2.5	1.3	2.3	1.5							
T		W_1	7.33	8	7	8	6.99	8							
		L ₄		5		5		4							
		L ₃		1		1		1							
		L ₂	8.92			23.7	19.81	22							
		L1	16	23	12.7	24	22.41	23							
	Truck Type		Belly Dump	Dump Trailer	Do All	Dump Bed	Flow Boy	Dump Bed							
	Truck ID No.		1	12	48	64	21	16							

Page 1 of 1

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, MS

TACK OR PRIME COAT REPORT OF MATERIALS APPLIED

Pay Item No.

(8)

407 Tack Coat

Project No. BR-0063-04(003) / 104484301 & 302

County Greene and Perry
Inspector T. Taylor

Make of Di Seria		Distributo No		Material Mo Truck			bacity Ilons		te of oration	Calibration	Certified by	Materi	ial Type	Material Gra	ade		
Etnyre	S6927	Cent	t. II	Kenwor	th 2016	2,	000	7/12	2/2016	MDC	DT D6	A	.C.			AC-5	
Date	Applied	Material	Width	Area Square	Temp	Re	Stick N	leasure	fter	Net Gallons	Conversion	Net Gallons	Spread Gallons per	Gallons per Square		rshot (over 15% check if	Domorko
Applied	Station	Station	Feet	Yards	Material Degree F	In.	Gals.	In.	Gals.	As Measured	Factor	at 60 Degrees F	Square Yard	Yard Ordered		regular)	Remarks
7/15/2016	4+56	50+00	12	6,058.7	325	46	2000	0	0	2,000	0.9105	1,821	0.301	0.300		0	
7/16/2016	50+00	90+57	12	5,409.3	320	46	1875	12	410	1,465	0.9122	1,336	0.247	0.250		0	
7/16/2016	4+56	50+00	12	6,058.7	320	46	1875	5	125	1,750	0.9122	1,596	0.263	0.250		3	
7/17/2016	50+00	90+57	12	5,409.3	290	46	1875	12	410	1,465	0.9220	1,351	0.250	0.250		0	
7/18/2016	50+00	60+00	16	1,777.8	315	46	1875	30	1350	525	0.9138	480	0.270	0.250	✓	0	
		<u> </u>															
		<u> </u>															
		<u> </u>															
L	I	I	1	L	I	I	I	I	L	Total Nat C		6 5 9 4		Total O	rchat	2	
Remarks:	(1)	turn lane								i otal Net G	allons Spread:	6,584	1	Total Ove	rsnot:	3	1
nemarks.	(2)							•					Total Pay	Gallons This	Sheet	6,581	1
	(3)							-					Totarray		SHEEL.	0,501	IJ
	(4)							•		Prenared Rv.							
	(5)									. repared by.							-
	(6)								Pro	oject Engineer:							
	(7)							•		Jeer Linginieer.							-
	(9))		•													

Construction Manual

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, MS

RECAP OF BAR LIST

		MASTP-0032-0		LECAP OF B							
	COUNTY:		1(022)/10000	1-301							
	BARS FOR:			DEOLI		OF Fuel Deuter		2			
STRU	UCTURE INFO:	Bridge A at Sta	tion 12+34	KEQU	IRED NUMBER (OF End Bents :		2			
	COMMENTS:	Remark									
QTY.	SIZE	GRADE FT.		GTH IN.	MARK	PAY LENGTH (FT)	LBS/FT	LBS.			
1	8	60	8	3	H8S60	8.250	2.670	22.028			
1	0	00	0	5	118500	0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
		<u> </u>				0.000	0.000	0.000			
		<u> </u>				0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.00			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.00			
						0.000	0.000	0.00			
						0.000	0.000	0.00			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
						0.000	0.000	0.000			
		<u> </u>				0.000	0.000	0.00			
		<u> </u>				0.000	0.000	0.00			
						0.000	0.000	0.000			
	<u>I</u>	<u> </u>			<u>I</u>		R 1 End Bent:	22.028			
							R 2 End Bent:	44.056			
				GRAND TOT	AL (1 End Bent)	FOR Bridge A at S		22.028			
				GRAND TOTA	AL (2 End Bent)	FOR Bridge A at S	tation 12+34:	44.056			

CAD-250 Rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, MS

WEIGHTS PER BAR SIZE

	PRO	DJECT NO.:	MASTP-00	32-01(022)	/100001-30)1								
		COUNTY:	Hancock											
		BARS FOR:				QUIRED N	JMBER OF	End Bents	:	2				
	STRUCT	URE INFO:		t Station 12	2+34									
	СС	OMMENTS:	Remark											
				Bar Size										
1	2	3	4	5	6	7	8	9	10	11	12			
							22.028							
ļ			ļ	ļ	ļ				ļ					
			ļ	ļ	ļ				ļ					
			ļ	ļ	ļ				ļ					
0.000	0.000	0.000	0.000	0.000	0.000	0.000	22.028	0.000	0.000	0.000	0.000			
0.000	0.000	0.000	0.000	0.000	0.000	0.000	44.056	0.000	0.000	0.000	0.000			
0.000	0.000	0.000	0.000	0.000	0.000	0.000	22.028	0.000	0.000	0.000	0.000			
0.000	0.000	0.000	0.000	0.000	0.000	0.000	44.056	0.000	0.000	0.000	0.000			

Sheet 3 of 3

CAD-250 Rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, MS

WEIGHTS PER BAR SIZE

	PR	OJECT NO.:	MASTP-00	1ASTP-0032-01(022)/100001-301 ancock											
		COUNTY:													
		BARS FOR:	End Bent		RE		UMBER OF	End Bents	:	2					
	STRUCT	URE INFO:	Bridge A a	t Station 12	2+34										
	СС	OMMENTS:	Remark												
					1	Size									
13	14	15	16	17	18	19	20	21	22	23	24				
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
		-			1										
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000				

Page 1 of 1										ADJUSTMENT		\$13,309.54	\$17,746.06	\$17,985.87	\$17,746.06	\$11,990.58				Co	nstı	<u>uct</u>	<u>ion</u>	M	anu	\$78,778.11 ¹⁰
Ğ			I	I			I			ADJ									_							
			2016				ILL EACH	0.50 FOR	ADJUSTED	UNITS	BID PRICE	\$44.40	\$44.40	\$60.00	\$44.40	\$60.00										TOTALS
			7/24/2016				PAY FACTOR WI	r be less than	REDUCTION	FACTOR	(1-PF)	37.00%	37.00%	50.00%	37.00%	50.00%										
			5				MPACTION	SHALL NO		РАҮ	FACTOR	0.630	0.630	0.500	0.630	0.500										
NOIL			6/25/2016		_		ND THE COP	PAY FACTOR		401.02.6.4	DENSITY	06.0	06.0	0.70	0.90	0.70										
ORTA			6/22/		J. Johnson		/ FACTOR #	OMBINED IN PLACE.	ACTORS		AC	0.85	0.85	0.75	0.75	0.75										
DEPARTMENT OF TRANSPORTATION Jackson, Mississippi	SPHALT PRICE ADJUSTMENT		DATE:		PROJECT ENGINEER: J. Johnson	SIGNATURE:	THE SMALLEST MIXTURE QUALITY PAY FACTOR AND THE COMPACTION PAY FACTOR WILL EACH	[–] APPLY SEPARATELY. HOWEVER, THE COMBINED PAY FACTOR SHALL NOT BE LESS THAN 0.50 FOR – ANY MIXTURE ALLOWED TO REMAIN IN PLACE.	CHARACTERISTIC PAY FACTORS	401.02.6.3	GRADATION	06.0	0.75	0.90	0.75	06.0										
ARTMENT OF TR Jackson, Mississippi	PRICE AL				PROJE		EST MIXTU	arately. H Ire allow	CHARAC	401	VMA	06.0	06.0	06.0	0.90	06.0										
EPARTI Jacks	PHALT F						THE SMALL	APPLY SEPA ANY MIXTU			VOID	0.70	0.70	0.70	0.70	0.70										
MISSISSIPPI D	AS									РАҮ	TONAGE	299.76	399.69	299.76	399.69	199.84										
MISS		142345 301		5T, 9.5 mm	ST95.10111	2.542	0.999	\$120.00		S.G.	FACTOR	0.999	0.999	0.999	0.999	0.999										
		PROJECT NO: MASTP-0032-01(022) / 142345 301 COUNTY: Hancock	1	TYPE MIX: ST, 9.5 mm	ST95.	2.	0.	\$12	ENTER	TONNAGE	WEIGHED	300.00	400.00	300.00	400.00	200.00										
		MASTP-00 Hancock		403-A					ENTER	гот	NO.	1	2	3	1	2										
		COUNTY: Hancock	ESTIMATE NO:	PAY ITEM NO:	MIX DESIGN ID:	K DESIGN:	S.G. FACTOR:	BID PRICE:	ENTER	TEST	NO.	1	1	1	2	2										
CAD-280 rev. 6-17		PRC	ESTIN	PAY	D XIM	Gmm FROM MIX DESIGN:	S.G.	8	ENTER	DATE		7/12/2016	7/12/2016	7/12/2016	7/13/2016	7/13/2016										

Construction Manual

Jackson, Mississippi

LABOR QUESTIONNAIRE (FEDERAL-AID PROJECTS)

INFORMATION REGARDING COMPLIANCE WITH FEDERAL LABOR STANDARDS

ſ

		Date:		
Project Number(s):		County(s):		
Employee Interviewed:		Employed By:		
Employer Address:	Employer Phone:			Prime Contractor
	Employer Email:			Sub-Contractor
Job Classification:		Hourly Rate:		
Have you seen the wage rates posted on the job	site?		Yes	No
What dates have you worked on this project? (ap	prox.) From:	1	To:	
What other job classifications have you worked i	n on this project?	What was your ho	urly rate?	
Do you ever work more than 40 hours a week on	this project?		Yes	No
Do you receive time and one half for overtime?			Yes	No
Were you ever underpaid on this project?			Yes	No
If you were underpaid, did you complain to anyo	ne about it?		Yes	No
If you complained, to whom did you complain?				
If you complained, what was done about your co	mplaint?			
Are you aware of your employer's Equal Employr	nent Opportunity F	Policy?	Yes	No
If "yes", how were you made aware of this	policy?			
Do you know who the Equal Employment Opportu	unity Officer is for y	our employer?	Yes	No
If you have anything further to add, please use the	nis space:			

Interviewer:

Signature

Title

When project is release from Maintenance, scan copy to Contract Compliance Officer.

Jackson, Mississippi

STATEMENT OF DAILY CHARGES FOR LIQUIDATED DAMAGES

(FOR EACH CALENDAR DAY OF DELAY)

Project No(s):	
County(s):	
Contractor:	
Address:	
Original Contract Time:	Working day Calendar day
Original Completion Date:	
Extension in Contract Time due to increase in quantities:	Working day Calendar day
Extension in Contract Time by Supplemental Agreement approved by FHWA:	Working day Calendar day
Revised Total Contract Time:	Working day Calendar day
Revised Completion Date:	(Completion Date as Amended)
Choose an Item:	(End Date for Damages Time Period)
Overrun in Contract Time:	(Calendar Days)
No. of Days to not Charge:	(Calendar Days)
Reason for Days not Charged:	
No. of Days for Damages:	
Original Contract Amount:	
Daily Charge: Total Liquidated Damages:	

Project Engineer Signature

Date

Jackson, Mississippi

Pg. 1 of 2

CHECK OFF SHEET FOR SUBMISSION OF FINAL DATA FOR SITEMANAGER PROJECTS

As-	Bui	It Plans		
	1.	Are there as-built plans for this project? If YES , go to Item 2. If NO , skip to Item 5.	YES	
	2.	The Project Engineer has signed all pages of the as-built plans in the upper right hand corner in black ink. This should be his/her original signature.		
	3.	All changes in the plans have been made on the as-built plans in red ink that will not bleed, run, or fade.		
	4.	Final quantities have been entered on the summary sheet of the as-built plans and are the same as the quantities listed on the CSD-200.		
		Pata Binder - Prepare a binder containing the documents listed below and assembled in the ing order:		
	5.	The SiteManager General Data Sheet/Critical Dates Report		
	6.	Pre-Construction Conference Minutes		
	7.	One (1) Original Signed CSD-200		
	8.	Three (3) Original Signed & Notarized Project Engineer affidavits		
	9.	One (1) copy of all Supplemental Agreements & Quantity Adjustments		
		Note: Any change or addition of pay items, or time extensions is supported by a supplemental agreement. All supplemental agreements have been signed by the proper persons and placed in the binder. If all supplemental agreements have not been signed, this should be so noted. All supplemental agreements and quantity adjustments have been entered into SiteManager and <u>approved</u> .		
	10.	One (1) Original Signed Liquidated Damages Statement, only when Liquidated Damages are assessed		
	11.	For projects with Asphalt Pay Items, Form CAD-97 has been generated on the SiteManager website and signed.		
	12.	Form CAD-12 has been completed and signed.		
		Note: Supporting data is included for deductions and incentives listed on the CAD-12. Include proper documentation such as Density and Smoothness worksheets; and testing reports from the District Lab.		
	13.	All Productive Day/Working Day Monthly Assessment Reports (CSD-765) from beginning of Contract Time to date Time charges ceased.		
	14.	Truck Measurements are checked and signed.		

Diaries

15. A diary has been prepared for each calendar day in accordance with the MDOT Construction Manual section 1.3.3 – Project Diary.

- 16. All Daily Work Reports (DWRs) have been approved in SiteManager by the project engineer designated by the Chief Engineer. If the project engineer changes during the duration of the project, include a copy of the letter from the Chief Engineer authorizing the change in the Final Data binder. If anyone but the project engineer authorizes the DWR he/she must be authorized by the Chief Engineer to sign these DWRs. 17. The critical dates on the SiteManager General Data Sheet/Critical Dates Report have been noted in the SiteManager DWR remarks. Final Quantity Data Binder(s) 18. Supporting data for all quantities recorded on the CSD-200 is included in the same order the items appear on the CSD-200. Check to make sure final quantity data matches the totals on the CSD-200. Please submit bridge item quantity data in a separate binder. 19. All pay item recap sheets have been signed by the Project Engineer. Remember to include quantity sheets for all items including lump sum, dependent items, and zero quantity items. 20. All computations are signed and dated by the person doing the original computations and, also, signed and dated by the person doing the checking. 21. The percent of moisture has been recorded on each ticket when moisture has been used to compute quantities. 22. Every MDOT produced ticket has been accounted for. All tickets (MDOT or Contractor) are signed at the point of delivery and are in sequence. All corrected tickets have been initialed and an explanation of why the changes have been made is written on the ticket. 23. Tickets have been separated by date. The print out of the day's run is wrapped around the tickets of the day's run. Wrap the printout around they day's run so that the project number will be visible to Final Plans. If the day's total as shown on the contractor ticket is not the same as the total shown on the computer print out, an adding machine tape (or excel recap) of the ticket that verifies the computer print out total is attached. 24. Submit Final Ticket Printout for each Pay Item in which tickets are required. Check tickets against Final Ticket Printout to assure correct entry into ticket program. Each Final Ticket printout must be signed by the person entering the quantities, the person checking the quantities and the project engineer. 25. All final data material is neatly and clearly identified by project number, and county; where appropriate. **Electronic Data Submission**
 - 26. A computer disk with all electronically computed quantity files has been submitted or the files saved in the project folder in ProjectWise. A reference (file name) to the electronic file is placed in binder under each pay item when quantities are submitted electronically.

Jackson, Mississippi

AGREEMENT FOR PROPOSED FORCE ACCOUNT EXTRA WORK

Project No. STP-0032-01(022)/103888301

Date

7/12/2016

Submit 2 Copies

County HANCOCK

To the Executive Director of the Mississippi Department of Transportation:

Pursuant to your request for a proposal covering proposed "Extra Work" herein stipulated for which unforeseen work there are no quantities or unit prices included in our contract for the construction of the above mentioned project: (1) (We) hereby agree to perform the necessary work and furnish the necessary labor, materials, and equipment that may be required of me (us) at not to exceed the unit prices quoted below. The work to be performed and materials furnished in accordance with the standard specifications of the Mississippi Department of Transportation and the special provisions applicable to the above project. Description of Extra Work and Reasons therefore: (List Stations Involved)

Excavate the roadbed of old Hwy 43.

Operator x 2 80.0 § 25.00 § 2000 Laborer x 3 120.0 § 120.0 150.0 § 150.00 § 150.00 § 130.00 \$ 130.0 \$ 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0<						LAB	OR, TEAMS	, AND FORE	MAN				
Operator x 2 80.0 § 25.00 § 2000 Laborer x3 120.0 \$ 3.000 \$ \$ 3.000 \$ \$ 3.000 \$ \$ \$ 3.000 \$ \$ 3.000 \$ \$ 3.000 \$ 3.000 \$ \$ 3.000 \$ \$ 3.000 \$ \$ 3.000 \$ 3.000 \$ \$ 3.000 \$ \$ 3.000 \$ \$ 3.000 \$ \$ \$ \$ \$ \$ \$ <td></td> <td>Classification</td> <td></td> <td></td> <td></td> <td>Estim</td> <td>ated Hours</td> <td>S</td> <td></td> <td>Hourly</td> <td>Rate</td> <td>Estimate</td> <td>ed Amount</td>		Classification				Estim	ated Hours	S		Hourly	Rate	Estimate	ed Amount
Laborer x 3 120.0 \$ 12.00 \$ 1.440 Truck Driver x 4 160.0 \$ 15.00 \$ 2.400 Sub Total \$7,240.00 plus 20% of Labor, Teams, and Foreman \$1.448.00 Total Labor \$ 8.688 Material Unit Estimated Quantity Unit Price Estimated Amount. Class C Concrete C1 1.000.00 \$ \$ 3.66.00 Riprap T 1.000.00 \$ \$ 3.66.00 Riprap T 1.000.00 \$ \$ 3.66.00 Sub Total \$63.800.00 plus \$ 3.600.00 \$ 3.300.00 Sub Total \$63.800.00 plus 15% 6 material cost \$ 7.3.370 Contracturer Make/Model/Type Yee Fuel Hourk Rate Contractor Raterial \$ 7.3.370 Tactor Tailer Titermational \$ 3.5.00 \$ Total Material \$ 7.3.270 <	Foreman						40.0		\$			\$	1,400.00
Truck Driver x.4 160.0 \$ 15.00 \$ 2,400 Sub Total \$7,240.00 plus 20% of Labor, Teams, and Foreman \$1,448.00 Total Labor \$ 8,688 Material Unit Estimated Quantity Unit Price Estimated Amount Gass C Concrete CV 150.00 \$100.00 \$ 365.00 \$ 365.00 Rigrap T 1,000.00 \$36.50 \$ 365.00 \$ 350.00 \$													2,000.00
Sub Total S7,240.00 plus 20% of Labor, Teams, and Foreman S1,448.00 Total Labor S 8,688 Material Unit Estimated Quanity Unit Price Estimated Amount Class C Correte CY 150.00 \$36.50 \$36.50 \$36.50 Bigrap T 1,000.00 \$356.50 \$36.50 \$36.50 Geotextile Fabric SY 8,800.00 \$1.00 \$38.50 \$35.50 Dumping Fee SY 8,300.00 \$1.00 \$3.500 \$35.50 Sub Total \$553.80.00 plus 15% of material cost \$9.570.00 Total Material \$7.370 CONTACTOR OWNED EQUIPMENT Contractor Number Action Nu									<u> </u>				1,440.00
Material Unit Estimated Quantity Unit Price Estimated Amount Class C Concrete CY 150.00 \$100.00 \$1500.00 \$15,000 Riprap T 1.000.00 \$3650 \$3550 Getextile Fahric SY \$8,800.00 \$1.00 \$35.50 Dumping Fee SY \$3,500.00 \$1.00 \$35.50 Sub Total \$63,800.00 plus 15% of material cost \$9,570.00 Total Material \$73,370 Manufacturer Make/Model/Type Year Fuel Houry Rate Operating Cost Transport Hours Used Hours Used Hours Used Hours Used Hours Used 16.0 \$7,327 Tractor Trailer International 2008 Diesel \$351.5 \$0.00 \$20.00 32.0 Hours Used Hours Used Hours Used Hours Used Hours Used Hours Used 16.0 \$7,327 Tractor Trailer International 2008 Diesel \$951.5 8.00 40.0 \$3,928 Tractor Trailer International 2008 Diesel \$91.12 \$8.00 40.0 \$3,928 Tractor Trailer Mack/Model/Type Year Fuel Maxterial Invoice Ra	Truck Driver x 4						160.0		Ş		15.00	\$	2,400.00
Material Unit Estimated Quantity Unit Price Estimated Amount Class C Concrete CY 150.00 \$100.00 \$1500.00 \$15,000 Riprap T 1.000.00 \$3650 \$3550 Getextile Fahric SY \$8,800.00 \$1.00 \$35.50 Dumping Fee SY \$3,500.00 \$1.00 \$35.50 Sub Total \$63,800.00 plus 15% of material cost \$9,570.00 Total Material \$73,370 Manufacturer Make/Model/Type Year Fuel Houry Rate Operating Cost Transport Hours Used Hours Used Hours Used Hours Used Hours Used 16.0 \$7,327 Tractor Trailer International 2008 Diesel \$351.5 \$0.00 \$20.00 32.0 Hours Used Hours Used Hours Used Hours Used Hours Used Hours Used 16.0 \$7,327 Tractor Trailer International 2008 Diesel \$951.5 8.00 40.0 \$3,928 Tractor Trailer International 2008 Diesel \$91.12 \$8.00 40.0 \$3,928 Tractor Trailer Mack/Model/Type Year Fuel Maxterial Invoice Ra													
Material Unit Estimated Quantity Unit Price Estimated Amount Class C Concrete CY 150/00 \$100/00 \$36,50 \$3	Sub Total	\$7,240.00	plus	20%	of L	Labor, Tea				\$1,448.00	Total Labor	\$	8,688.00
Class C Concrete CY 150.00 \$1500.00 \$ 1500.00 Birpap T 1.000.00 \$38.50 \$ 365.00 Geotextule Fabric SY 8,800.00 \$1.00 \$ 8,800 Dumping Fee SY 8,800.00 \$1.00 \$ 8,800 Sub Total \$63,800.00 plus 15% of material cost \$9,570.00 Total Material \$ 7,3,370 Sub Total \$63,800.00 plus 15% of material cost \$9,570.00 Total Material \$ 7,3,370 Taractor Trailer Make/Model/Type Year Fuel Houry Rate Departing Cost Transport Hours Used Amount \$ 5 3,300 \$ 16.00 \$ 3,3962 Traider Trailer International 2001 Diesel \$ 91.32 \$ 8.00 40.0 \$ \$ 3,3962 Traider Trailer International 2001 Diesel \$ 91.32 \$				-									
Biprap T 1,000.00 \$36.50 \$ 36.50 \$ 36.50 \$ 36.50 \$ 36.50 \$ 36.50 \$ 36.50 \$ 36.50 \$ 36.50 \$ 36.50 \$ 86.800 \$ 88.800 \$ 88.800 \$ 88.800 \$ \$ 88.900 \$ \$ 88.900 \$ \$ 88.900 \$ <								ty					
SectextIle Fabric SY 8,800.00 \$1.00 \$ 8,800.00 Dumping Fee SY 3,500.00 \$1.00 \$ 3,500 Sub Total \$63,800.00 plus 15% of material cost \$9,570.00 Total Material \$7,3,370 Manufacturer Make/Mode//Type Year Fuel Houry Rate Operating Cost Transport Houry Sude Amount Caterpillar D7E 2010 Desel \$ 33.500 \$ 10.00 \$ 200.00 32.0 8.0 \$ 5.920 Tactor Trailer Nack 2000 Disel \$ 31.00 \$ 200.00 \$ 3.925 Tractor Trailer International 2008 Disel \$ 91.12 \$ 8.00 40.0 \$ 3.925 Tractor Trailer KenreD OR LEASED EQUIPMENT Max Rate Invoice Rate Rate Hours Amount Maufacturer Make/Mode//Type Year Fuel Max Rate												-	15,000.00
Dumping Fee SY 3,500.00 \$1.00 \$ 3,500 Sub Total \$63,800.00 plus 15% of material cost \$9,570.00 Total Material \$73,370 Manufacturer Make/Mode/Type Year Fue Hourly Rate Operating Cost Transport Hours Used Amount Contractor Failer D7E 2010 Diesel \$135.00 \$0.00 \$20.00 32.0 8.0 \$5.520 Tandem x 2 Mack 2006 Diesel \$90.13 \$8.00 \$40.0 \$3.3964 Tractor Trailer International 2008 Diesel \$91.12 \$8.00 40.0 \$3.3925 Tractor Trailer International 2008 Diesel \$91.12 \$8.00 \$40.0 \$3.3964 Manufacturer Make/Mode/Type Year Fuel Mark Rate Invoice Rate Rate Hours Amount Komatsu PC 200 2014 Diesel \$92.83 \$86.00 \$80.00 \$3.40.0 \$3.4													36,500.00
Sub Total \$63,800.00 plus 15% of material cost \$9,570.00 Total Material \$73,370 CONTRACTOR OWNED EQUIPMENT Manufacturer Make/Mode/Type Year Fuel Houry Nate Operating Cost Transport Hours Idle Amount Caterpillar D7E 2010 Diesel \$5,515 \$8,00 \$64.0 166.0 \$7,327 Trandem x2 Mack 2005 Diesel \$5,15 \$8,00 \$40.0 \$5,320 Tractor Trailer International 2008 Diesel \$9,13 \$8,00 \$40.0 \$3,3954 Tractor Trailer Kenworth 2011 Diesel \$9,13 \$8,00 \$40.0 \$5,320 Tractor Trailer International 2008 Diesel \$9,122 \$8,00 \$40.0 \$5,323 Tractor Trailer Kenworth 2011 Diesel \$9,122 \$8,00 \$40.0 \$5,323 Tractor Trailer Kenworth 2011 Mack Mode/Type Year Fuel Mack Year Year Year Year Year <td></td> <td>2</td> <td></td> <td>8,800.00</td>		2											8,800.00
Manufacturer Make/Model/Type Year Fuel Houry Rate Operating Cost Transport Hours Used Hours Used Amount Tandem x 2 Mack 2006 Diesel \$ 135.00 \$ 0.00 \$ 200.00 32.0 8.0 \$ 5,520 Tandem x 2 Mack 2006 Diesel \$ 85.15 \$ 8.00 64.0 16.0 \$ 7,324 Tractor Trailer International 2008 Diesel \$ 90.13 \$ 8.00 40.0 \$ 3,964 Tractor Trailer International 2008 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3,964 Total Contractor Owned Equipment \$ 21,134 Manufacturer Make/Model/Type Year Fuel Max Rate Invoice Rate<	Dumping Fee			SY		3,	,500.00			\$1.0	0	\$	3,500.00
Manufacturer Make/Model/Type Year Fuel Houry Rate Operating Cost Transport Hours Used Hours Idle Amount Tandem x 2 Mack 2006 Diesel \$ 315.00 \$ 0.00 \$ 200.00 32.0 8.0 \$ 5,520 Tandem x 2 Mack 2006 Diesel \$ 0.13 \$ 8.00 40.0 \$ 3,3964 Tractor Trailer International 2008 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3,964 Tractor Trailer International 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3,964 Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3,964 Total Contractor Owned Equipment \$ 21,134 RENTED OR LEASED EQUIPMENT Total Contractor Name Equipment \$ 21,134 Manufacturer Make/Model/Type Year Fuel Max Rate Invoice Rate Rate Hours Amount Komatsu PC 200 2014 Diesel \$ 89.28 \$ 86.													
Manufacturer Make/Model/Type Year Fuel Houry Rate Operating Cost Transport Hours Used Hours Used Amount Caterpillar D/E 2010 Diesel \$ 135.00 \$ 10.00 \$ 200.00 32.0 8.0 \$ 5,920 Tractor Trailer International 2008 Diesel \$ 90.13 \$ 8.00 40.0 \$ 3,925 Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3,925 Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ 21,134 Manufacturer Make/Model/Type Year Fuel Max Rate Invoice Rate Rate Hours Amount Kornatsu PC 200 2014 Diesel \$ 82.92 \$ 86.00 \$ 40.0 \$ 21,134 Manufacturer Make/Model/Type Year Fuel Max Rate Invoice Rate Rate Hours Amount Kornatsu PC 200 2014 Diesel	Sub Total	\$63,800.00	plus	15%	of mate						Total Material	\$	73,370.00
Caterpilar DF 2010 Disel \$ 135.00 \$ 10.00 \$ 200.00 32.0 8.0 \$ 5.732 Tandem x 2 Mack 2006 Diesel \$ 85.15 8.00 66.0 16.0 \$ 7,324 Tractor Trailer International 2008 Diesel \$ 90.13 \$ 8.00 40.0 \$ \$ 3,925 Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ \$ 3,964 Total Contractor Winde Equipment \$ 21,134 Total Contractor Owned Equipment \$ 21,134 Total Contractor Date Date Date								-					
Tandem x 2 Mack 2006 Diesel § 85.15 § 8.00 64.0 16.0 § 7,324 Tractor Trailer International 2008 Diesel § 90.13 § 8.00 40.0 \$ 3,925 Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3,925 Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ \$ 3,925 Tractor Trailer Kenworth Z011 Diesel \$ 91.12 \$ 8.00 40.0 \$ \$ 21,134 Manufacturer Make/Model/Type Year Fuel Max Rate Invoice Rate Rate Hours Amount Komatsu PC 200 2014 Diesel \$ 89.28 \$ 86.00 \$ 40.0 \$ 3,440 Maufacturer Make/Model/Type Year							-	-		-			
Tractor Trailer International 2008 Diesel \$ 90.13 \$ 8.00 40.0 \$ 3.925 Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3.925 Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3.925 Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3.925 Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3.925 Manufacturer Make/Model/Type Year Fuel Max Rate Invoice Rate Rate Hours Amount Komatsu PC 200 2014 Diesel \$ 89.28 \$ 86.00 \$ 40.0 \$ 3.440 Manufacturer Make/Model/Type Year Fuel Max Rate Invoice Rate Rate Hours Amount Komatsu PC 200 2014 Diesel \$ 89.28 \$ 86.00 \$ 40.0 \$ 3.440 Sub Total \$ 33,440.00 Plus 10% Fuel, Maint., and Service <									Ş	200.00			
Tractor Trailer Kenworth 2011 Diesel \$ 91.12 \$ 8.00 40.0 \$ 3.964 Total Contractor Owned Equipment Total Contractor Owned Equipment Total Contractor Owned Equipment Total Contractor Owned Equipment Manufacturer Manufacturer Max Rate Invoice Rate Rate Hours Amount Komatsu PC 200 2014 Diesel \$ 89.28 \$ 86.00 \$ 86.00 40.0 \$ 3.440 Mobilization and Transportation Sub Total \$3,440.00 plus 10% Fuel, Maint., and Service \$344.00 Total Rented Equipment \$ 4.014 Sub Total \$3,440.00 plus 10% Fuel, Maint., and Service \$344.00 Total Rented Equipment \$ 4.014 Sub Total \$3,440.00 plus 10% Fuel, Maint., and Service \$344.00 Total Rented Equipment \$ 4.014 Sub Total \$3,440.00 plus 10% Fuel, Maint., and Service \$ 344.00 Total Rented Equipment \$ 4.014													

Jackson, Mississippi

Submit 2 Copies

FINAL AGREEMENT FOR FORCE ACCOUNT EXTRA WORK

Project No. MASTP-0032-01(022)/100001-301

7/28/2016

Date

County HANCOCK

Below is a statement of force worked (and material used) as per agreement previously entered into in writing in performing work on the above project, under directions from the Engineer. The work is described in detail as follows:

Dates Work Performed 7/14-7/23/2016

				LABOI	R, TEAMS, AND FOF	REMAN			
	Classification			Hours	Worked	Hour	y Rate	An	nount
Foreman				48	3.0	\$	35.00	\$	1,680.00
Operator				90	5.0	\$	25.00	\$	2,400.00
Laborer				14	4.0	\$	12.00	\$	1,728.00
Truck Driver x 4				16	0.0	\$	15.00	\$	2,400.00
Sub Total	\$8,208.00	plus	20%	of Labor, Team	s, and Foreman	\$1,641.60	Total Labor	\$	9,849.60
			-		MATERIALS	-			
	Material		Unit		luantity		Price		nount
Class C Concrete			CY		0.00		0.00	\$	14,000.00
Riprap			T	,	0.00		5.50	\$	43,800.00
Geotextile Fabric			SY		0.00		.00	\$	8,800.00
Dumping Fee			SY	3,50	00.00	\$1	.00	\$	3,500.00
						1		-	
Sub Total	\$70,100.00	plus	15%	of material cost	\$10,515.00		Total Material	Ş	80,615.00
Manufacturor	Make /Medal/Tune	Voor	Fuel		ACTOR OWNED EQU		Hours Llood	Hours Idla	Amount
Manufacturer Caterpillar	Make/Model/Type D7E	Year 2010	Fuel Diesel	Hourly Rate \$ 135.00	Operating Cost \$ 10.00	Transport \$ 200.00	Hours Used 40.0	Hours Idle 8.0	Amount \$ 7,080.00
Tandem x 2	Mack	2010	Diesel	\$ 135.00		\$ 200.00	64.0	16.0	\$ 7,080.00
Tractor Trailer	International	2008	Diesel	\$ 90.13	\$ 8.00		40.0	10.0	
Tractor Trailer	Kenworth	2000	Diesel	\$ 91.12	\$ 8.00		40.0		
			Diesei	φ 51.12	φ 0.000		1010		
							Owned Equipment	\$	7,080.00
					D OR LEASED EQUI			-	
Manufacturer	Make/Model/Type	Year	Fuel	Max Rate	Invoice Rate	Rate	Hours		nount
Komatsu	PC 200	2014	Diesel	\$ 89.28	\$ 86.00	\$ 86.00	48.0	\$	4,128.00
		<u> </u>							
								<i>*</i>	220 52
Sub Total	\$4.128.00	plus	10%	Fuel. Maint and	Service \$41		and Transportation Rented Equipment		230.52 4.771.32
Sub Total	\$4,128.00	plus	10%	Fuel, Maint., and	I Service \$41		Rented Equipment	\$	4,771.32
Sub Total						2.80 Total	Rented Equipment Sub Total	\$ \$	4,771.32
Sub Total						2.80 Total	Rented Equipment Sub Total Social Security Tax	\$ \$ \$	4,771.32 102,565.92 600.00
	Property Dama	ige, Liabil				2.80 Total	Rented Equipment Sub Total	\$ \$ \$	4,771.32
Sub Total	Property Dama	ige, Liabil				2.80 Total	Rented Equipment Sub Total Social Security Tax	\$ \$ \$ \$	4,771.32 102,565.92 600.00
Emergenc	Property Dama	oge, Liabil	ity and W	orkers' Comp. Insu	rance, Unemploym	2.80 Total	Rented Equipment Sub Total Social Security Tax emium & Sales Tax	\$ \$ \$ \$	4,771.32 102,565.92 600.00 150.00
Emergenc	Property Dama	oge, Liabil	ity and W	orkers' Comp. Insu	rance, Unemploym	2.80 Total	Rented Equipment Sub Total Social Security Tax emium & Sales Tax	\$ \$ \$ \$	4,771.32 102,565.92 600.00 150.00
Emergenc	Property Dama	oge, Liabil	ity and W	orkers' Comp. Insu	rance, Unemployn d remains unpaid.	2.80 Total	Rented Equipment Sub Total Social Security Tax emium & Sales Tax	\$ \$ \$ \$	4,771.32 102,565.92 600.00 150.00
Emergenc	Property Dama y YES NC y, that the foregoing Contractor	oge, Liabil	ity and W	orkers' Comp. Insu	rance, Unemployn d remains unpaid.	2.80 Total	Rented Equipment Sub Total Social Security Tax emium & Sales Tax Total Cost Agent	\$ \$ \$ \$	4,771.32 102,565.92 600.00 150.00 103,315.92
Emergenc I do hereby certif Certified Correct:	Property Dama y YES NC y, that the foregoing Contractor	oge, Liabil	ity and W	orkers' Comp. Insu	rance, Unemployn d remains unpaid.	2.80 Total Nent Insurance and Bond Pre	Rented Equipment Sub Total Social Security Tax emium & Sales Tax Total Cost Agent	\$ \$ \$ \$	4,771.32 102,565.92 600.00 150.00 103,315.92

Division Administrator

Date

Date

CSD-203 rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

REPORT OF FERTILIZERS APPLIED

Project No(s))									
County(s	5)									
			TYPE	S			RATE	S		
	1. AC	GRICULTU	RAL LIMES	TONE			то	NS / AC	RE	
	2. CC	MBINATI	ON FERTIL	.IZER ()	LB	S / ACRE		
	3. AN	MONIUM	M NITRATE	Ξ			LB	s / Acre		
	4. SU	IPERPHOS	PHATE				(BID)		
		TYPES A	AND RATE	S ORDE	RED AND	USED A	S FOLLOV	VS		
	(A) TYPE			RATE		LBS /	ACRE		
	(В) TYPE			RATE		LBS /	ACRE		
	ATION	ACRE(S)	DATE	LIME	COMBI- NATION	AMMO- NIUM	DATE	SUPERPH	IOSPHATE	REMARKS
STA. T	O STA.		SPREAD	STONE	FERT.	NITRATE	SPREAD	4(A)	4(B)	ILEMANKS
+	+									
+	+									
+	+									
+	+									
+	+									
	1		İ	1		1		1		

+	+					
+	+					
+	+					
+	+					
+	+					
+	+					
+	+					
+	+					
+	+					
+	+					
+	+					
+	+					
+	+					
	Totals					

Submitted by _____ Date _____

CSD-481 rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

REPORT OF BITUMINOUS AND VEGETATIVE MATERIALS APPLIED

AL	NET TONNAGE ALLOWED CONTRACTOR			REMARKS																ons	tru	0110	u Tial transferred from other projects should be explained in the above remarks. The contractor shall have the distributor calibrated
VEGETATIVE MATERIAL	DEDUCTION			MULCH OVER SHOT R																			he distributor
VEGE	TOTAL QUANTITY TONS			ACRE ORDERED (+15%)																			or shall have t
	SATISFACTORY CARD NUMBERS OR CAR SEAL NUMBERS			5 TONS PER ACRE																			e contracto
		 -		NO. TONS PLACED																			arks. The
	MATERIAL MOVED BY TANK CAR NO. OR TRUCK NO.			AVG. WT. PER BALE																			above rem
ATERIAL	GRADE OF MATERIAL		NO. OF	T BALES MULCH TYPE																			ed in the
*BITUMINOUS MATERIAL				ASPHALT UNDER SHOT																			e explain
*BITUN	CALIBRATION CERTIFIED BY AND DATE		G	, R)																			should h
	CAPACITY PER CALIBRATION TABLE		SPREAD	S PER ACRE																			er nroiects
	MAKE OF DISTRIBUTOR C/ & SERIAL NO.		NS	- GALLONS AT 60 F																			d from oth
	DISTR & SEI		GALLONS																				ansferre
				AFI EK GALS																			aterial tr
			STICK MEASURE	e GALS IN																			av item. M
				IN BEFORE																			v - nota n
				TEMP. MAT'L																			luo seso
				ACRES																			cation nurr
			IED 3IAL	STA.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		s recorded for applic
NO.(s)	(s)/		APPLIED MATERIAL	STA.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		*Bituminous material quantities recorded for application purposes only - not a pay item. Materi
Project No.(s)	County(s)			DATE APPLIED																		TOTAL	Bituminou

Inspector

Date

Jackson, Mississippi

PROJECT ENGINEER'S AFFIDAVIT ACCOMPANYING FINAL ESTIMATE

STATE OF MISSISSIPPI		
County(s)		
Project No.(s)		
	County of Contractor	

This is to certify that to the best of my knowledge and belief:

- a) The above project(s) has been constructed in accordance with the "Final Plans" (reduced blueline prints), sketches, prints and cross-sections which bear my signature in the upper right hand corner of each sheet thereof, and same have been filed with the Mississippi Department of Transportation, Jackson, Mississippi.
- b) The work meets the requirements of the specifications therefor.
- c) All materials used requiring laboratory test have been tested and are covered by "Accepted" laboratory reports.
- d) Sufficient data has been submitted to permit the Mississippi Department of Transportation to make an accurate check of quantities.
- e) The quantities shown on the final estimate are correct.
- f) The Contractor has removed all equipment from sight of the highway or has stored same in such manner off the right-of-way that same does not appear to have been abandoned or "junked". This likewise applies to all materials except those stored in a manner satisfactory to the District Engineer for the use of the Department at some later date.

Signature _____

Project Engineer

Sworn to and subscribed before me this the ______day of _____

Notary Public

My Commission Expires

NOTE: Submit a TRIPLICATE for each project.

CSD-603 rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

PARTY CHIEF'S DAILY REPORT

Project No.		
Date	Weather	
Day	Worked	
	Station to Station	
C/L Stakes		
P O W		
Original X Sec		
Final X Sec.		
Slope Stakes		
Bridges		
Ref. Points		
Property Lines		
Topography		
Other		

Box Culv.	Pipe Culv.	Pipe S.D.	Inlets		
Sta.	Sta.	Sta.	Sta.		
+	+	+	+		
+	+	+	+		
+	+	+	+		
		Vehicle No.			
Speedometer In					
Speedometer Out					
Miles Traveled					
Sta. Sta. Sta. Sta. + + + + + + + + + + + + + + + + + + + + geedometer In					
Party Chief	Instrum	entation	Rodmen		

Party Chief

CLASS I SUPPLEMENTAL AGREEMENT

Mississippi Department of Transportation Jackson, Mississippi

SM CO Number 001 SA Number 1

Project Number STP-1234-56(789) / 123456301

WE, ABC Contractor, Inc. (Contractor) and the Mississippi Transportation Commission (the Commission) hereby enter into this Class I Supplemental Agreement as follows:

- WHEREAS: ABC Contractor, Inc. and XYZ Insurance, Surety, entered into a Contract with the Commission on the 9th day of December 2016, for the construction of Federal Aid Project No. STP-1234-56(789) / 123456301, in Jackson County;
- **WHEREAS:** ABC Contractor, Inc. assigned all of its rights and obligations under the Contract to Contractor, which assignment was approved by both the Commission and XYZ Insurance, as Surety;
- **REOUEST:** To add Pay Items needed for additional work for Bridge Rail and Guard Rail Repair.
- **REASON:** After beginning of construction, it was determined that the Bridge Rail and Guard Rail on approach to the I-59 overpass associated with the work identified in the Original Contract had received significant damage thus requiring repair.

COST:	Pay Item	Item Description	Quantity	Unit Price	Unit	Amount	Project
	104-A001	Minor Alterations to the	1.00	\$8,953.85	LS	\$8,953.85	123456-301000
		Contract, Bridge Rail and Guard Rail Repair S/A					
	Net Total Change to Contract						

This agreement in no way modifies or changes the original contract of which it becomes a part, except as specifically stated herein.

WE FURTHER AGREE that, in consideration of the promises from the Commission herein, we, the Contractor, covenant and agree to release, discharge, and acquit the Mississippi Transportation Commission, the Mississippi Department of Transportation, their employees, servants, contractors, attorneys, agents, and any and all other persons, firms and corporations who may be in any manner liable therefore, from any and all actions, causes of action, claims and demands for any loss or any right arising under any law whatsoever, which was heretofore or may hereafter be sustained by the undersigned as a result of the circumstances or claim addressed in this Supplemental Agreement. In addition, we, the Contractor, will specifically indemnify and hold harmless the Commission and MDOT from any claim or action brought by a subcontractor working under the Contractor based on the circumstances contemplated in this Supplemental Agreement. The purpose of this Supplemental Agreement is to terminate any further expense or controversy against the Commission which could be made concerning the matters described herein. However, both the Commission and Contractor expressly reserve all rights of action, claims and demands against any and all other parties, known and unknown, not joined to this Supplemental Agreement. We, the Contractor, intend to completely, finally, irrevocably, and forever release, forgive, remise, acquit, and discharge any and all claims against the Commission and MDOT that relate to, arise from, or are in any manner connected to the matters as provided herein, and this Supplemental Agreement shall remain in effect as a complete and final waiver, forgiveness, and discharge of those matters against the Commission and MDOT.

Approved:

Resident/Project Engineer

Date

Contractor

Date

SUPPLEMENTAL AGREEMENT	PROJECT NAME / NO.		MODIFICATION NO.
ABC CONTRACTOR, INC.	STP-1234-56(789) Jackson County		1703.001
P.O. BOX 123			
MAGNOLIA, MS 39876	DATE:	Monday, February 06, 2017	

COST ANALYSIS FOR ADDITIONAL ITEMS OF WORK

ITEM NO.	DESCRIPTION	QUANTITY	ITEM UNITS	ITEM PRICE	TOTAL AMOUNT
	Type "A" Bridge End Section	1.00	Each	\$ 1,743.12	\$ 1,743.12

LABOR	EQUIPMENT	RENT	MATERIAL	SUBCONTRACT	TOTAL COST	
\$-	\$ -	\$-	\$-	\$ 1,450.00	\$ 1,450.00	
			NET OVERHEAD @	10.00%	\$ 145.0	0
				SUBTOTAL :	\$ 1,595.00)
			NET PROFIT @	5.00%	\$ 72.5	D
				SUBTOTAL :	\$ 1,667.50)
		c	ONTRACTOR'S TAX @	3.50%	\$ 58.3	6
				SUBTOTAL :	\$ 1,725.80	5
			BOND @	1.00%	\$ 17.2	6
			TOTAL PER	Each	\$ 1,743.12	2

STATEMENT OF JUSTIFICATION FOR THIS CONTRACT MODIFICATION:

MDOT has requested a price to remove damaged guardrail and bridge end section on the southbound bridge and replace

with a new Type A Bridge End section and approximately 75 lf of new guardrail.

LABOR						
ITEM NO.	DESCRIPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR	HOURS	TOTAL
						\$
					SUBTOTAL	\$
						\$
					TOTAL	: \$
EQUIPMENT						
ITEM NO.	DESCRIPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR	HOURS	TOTAL
						\$
					TOTAL	: \$
RENTAL						
ITEM NO.	DESCRIPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR	HOURS	TOTAL
						\$
					TOTAL	: \$
MATERIAL						
ITEM NO.	DESCRIPTION		QUANTITY	ITEM UNIT	COST/UNIT	TOTAL
						\$
					TOTAL	: \$
SUBCONTRACTOR	3					
ITEM NO.	DESCRIPTION		QUANTITY	ITEM UNIT	COST/UNIT	TOTAL
	CBA Fence Company		1.00	EA	\$ 1,450.00	\$ 1,450.00
						\$ 1,450.00

						(Constructio	n Manual	
SUPPLEMEN	NTAL AGREEN	1ENT	PROJECT NAME / NO.				MODIFICA	TION NO.	
			STP-1234-56(789)					
ABC CONTRAC	TOR, INC.		Jackson County				1703	.001	
P.O. BOX 123									
MAGNOLIA, M	S 39876		DATE:	Monday, Februar	y 06, 2017				
	COST ANALYSIS FOR ADDITIONAL ITEMS OF WORK								
ITEM NO.		DESCRIPTION		QUANTITY	ITEM UNITS		ITEM PRICE	TOTAL AMOUNT	
	Removal of Existing G	uardrail		100.00	LF	\$	6.90	\$ 690.04	
			I						
	LABOR	EQUIPMENT	RENT	MATERIAL	SUBCONTRACT		TOTAL COST		
	\$ -	\$-	\$ -	\$ -	\$ 5.74	\$	5.74		
				NET OVERHEAD @	10.00%	\$	0.57		
					SUBTOTAL :	\$	6.31		
				NET PROFIT @	5.00%	\$	0.29		
					SUBTOTAL :	\$	6.60		
			C	CONTRACTOR'S TAX @	3.50%	\$	0.23		
					SUBTOTAL :	\$	6.83		
				BOND @	1.00%	\$	0.07		
				TOTAL PER	LF	\$	6.90		

STATEMENT OF JUSTIFICATION FOR THIS CONTRACT MODIFICATION:

MDOT has requested a price to remove damaged guardrail and bridge end section on the southbound bridge and replace

with a new Type A Bridge End section and approximately 75 If of new guardrail.

LABOR							
ITEM NO.	DESCRIPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR	HOURS		TOTAL
						\$	-
					SUBT	OTAL: \$	-
						\$	-
					١	TOTAL: \$	-
EQUIPMENT							
ITEM NO.	DESCRIPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR	HOURS		TOTAL
						\$	-
					1	TOTAL: \$	-
RENTAL							
ITEM NO.	DESCRIPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR	HOURS		TOTAL
						\$	-
					١	OTAL: \$	-
MATERIAL							
ITEM NO.	DESCRIPTION		QUANTITY	ITEM UNIT	COST/UNIT	-	TOTAL
						\$	-
					1	OTAL: \$	-
SUBCONTRACTOR	1						
ITEM NO.	DESCRIPTION		QUANTITY	ITEM UNIT	COST/UNIT	-	TOTAL
(CBA Fence Company		100.00	LF	\$	5.74 \$	574.00
					т	OTAL: \$	574.00

SUPPLEM	ENTAL AGREEN	1ENT	PROJECT NAME / NO.				MODIFICA	TION N	0.
ABC CONTRA	CTOR, INC.		STP-1234-56(789))			1703	0 00	11
P.O. BOX 123			Jackson County				1703	5.00	ł L
MAGNOLIA, N			DATE:	Monday, February	06, 2017	1			
		COST A	NALYSIS FOR ADD	DITIONAL ITEMS O	F WORK				
ITEM NO.		DESCRIPTION		QUANTITY	ITEM UNITS		ITEM PRICE	Т	OTAL AMOUNT
	Mobilization			1.00	LS	\$	2,570.29	\$	2,570.29
	LABOR	EQUIPMENT	RENT	MATERIAL	SUBCONTRACT		TOTAL COST		
	\$ 317.04	\$-	\$ -	1			2,138.07		
				NET OVERHEAD @		_\$	213.81		
					SUBTOTAL :		2,351.88		
				NET PROFIT @		_\$	106.90		
				CONTRACTOR'S TAX @	SUBTOTAL : 3.50%	: \$ \$	2,458.78		
				CONTRACTOR 3 TAX @	SUBTOTAL :	_	2,544.84		
				BOND @		. , \$	2,344.84		
				TOTAL PER		_ \$	2,570.29		
							•		
ITEM NO.	DESCR	IPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR		HOURS		TOTAL
1	Traffic Control Forem		1.0		\$ 22.00	0	10.00) \$	220.00
							SUBTOTA	L: \$	220.00
							44.11%	\$	97.04
							ΤΟΤΑ	L: \$	317.04
EQUIPMENT									
ITEM NO.	DESCR	IPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR		HOURS		TOTAL
								\$	
RENTAL							TOTA	L: Ş	-
ITEM NO.	DESCR	IPTION	QUANTITY		UNIT RATE/HR		HOURS		TOTAL
					,			\$	-
							ΤΟΤΑ		-
MATERIAL									
ITEM NO.	DESCR	IPTION		QUANTITY	ITEM UNIT		COST/UNIT		TOTAL
1	Barrier Rail Rental			800.00	LF	\$	1.00	\$	800.00
							TOTAL	\$	800.00
SUBCONTRAC									
ITEM NO.		IPTION		QUANTITY		~	COST/UNIT	ć	TOTAL
1	CBA Fence Company			1.00	LS	\$	1,021.03	_	1,021.03
								.\$	1,021.03

			-			C	onstruction	1 10	Tallual
SUPPLEME	ENTAL AGREEN	1ENT	PROJECT NAME / NO.			MODIFICATION NO.			
ABC CONTRAC			STP-1234-56(789)						
ABC CONTRAC			Jackson County				1703	3.0	01
P.O. BOX 123									
MAGNOLIA, N	AS 39876		DATE:	Monday, February	06, 2017				
		COST A	NALYSIS FOR ADD	ITIONAL ITEMS O	F WORK				
ITEM NO.		DESCRIPTION		QUANTITY	ITEM UNITS		ITEM PRICE		TOTAL AMOUNT
	Guardrail			75.00	LF	\$	24.04	\$	1,803.23
		1	1						
	LABOR	EQUIPMENT	RENT	MATERIAL	SUBCONTRACT		TOTAL COST		
	\$ -	\$ -	\$ -	\$ -	\$ 20.00	\$	20.00		
				NET OVERHEAD @	10.00%	\$	2.00		
					SUBTOTAL :	\$	22.00		
				NET PROFIT @	5.00%	\$	5 1.00		
					SUBTOTAL :	\$	\$ 23.00		
			(CONTRACTOR'S TAX @	3.50%	\$	0.81		
					SUBTOTAL :	\$	23.81		
				BOND @	1.00%	\$	0.24		
				TOTAL PER	LF	\$	24.04		
STATEMENT O	F JUSTIFICATION FO	R THIS CONTRAC	T MODIFICATION	•					
MDOT has req	uested a price to ren	nove damaged gu	ardrail and bridge	end section on th	e southbound bri	dge	e and replace		
· · · · · ·	pe A Bridge End secti	0 0	•						
		••		-					

LABOR						
ITEM NO.	DESCRIPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR	HOURS	TOTAL
						\$
					SUBTOTAL:	\$
						\$
					TOTAL:	\$
EQUIPMENT						
ITEM NO.	DESCRIPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR	HOURS	TOTAL
					_	\$
					TOTAL:	\$
RENTAL						
ITEM NO.	DESCRIPTION	QUANTITY	ITEM UNIT	UNIT RATE/HR	HOURS	TOTAL
						\$
					TOTAL:	\$
MATERIAL						
ITEM NO.	DESCRIPTION		QUANTITY	ITEM UNIT	COST/UNIT	TOTAL
						\$
					TOTAL:	\$
SUBCONTRACTOR						
ITEM NO.	DESCRIPTION		QUANTITY	ITEM UNIT	COST/UNIT	TOTAL
CBA	A Fence Company		75.00	LF	\$ 20.00 \$	1,500.00
						\$ 1,500.00

CLASS II ADVANCED AUTHORITY

Mississippi Department of Transportation Jackson, Mississippi

SM CO Number 001 SA Number 1

_____ S/(Humber

Project Number MP-1234-56(789)/123456301

WE, ABC Contractor, LLC (Contractor) and the Mississippi Transportation Commission (the Commission) hereby enter into this Class II Supplemental Agreement as follows:

- WHEREAS: ABC Contractor, LLC and XYZ Insurance Company, Surety, entered into a Contract with the Commission on the 25th day of May 2016, for the construction of Federal Aid Project No. MP-1234-56(789)/123456301, in Jackson County;
- **WHEREAS:** ABC Contractor, LLC assigned all of its rights and obligations under the Contract to Contractor, which assignment was approved by both the Commission and XYZ Insurance Company, as Surety;
- **WHEREAS:** An additional section of roadway was added to the project along Hwy 53 from I-59 south 8.44 miles. This additional work was requested by the District Maintenance Division of MDOT, and;
- WHEREAS: The Contractor has requested additional compensation for Mobilization and Maintenance of Traffic, and;
- **WHEREAS:** The Contractor has requested additional Contract Time to account for the delay by MDOT in ordering this additional work and the time required to complete said additional work, and;
- **WHEREAS:** The number of days requested for the delay and the number of days requested for completion of the added work are 6 and 8 days respectively for a total of 14 Calendar Days to be added to the Original Completion Date, and;
- WHEREAS: MDOT has reviewed the request for additional time and compensation and found it to be acceptable, and;
- **NOW THEREFORE,** It is mutually agreed and understood that the work will be accomplished under the following pay items and unit prices:

Pay Item No.	Description	Unit	Quantity	Unit Price	Total			
620-A001	Mobilization, Additional for Extra Work S/A	LS	1.00	\$10,381.20	\$10,381.20			
907-618-	Maintenance of Traffic, Additional for Extra							
A001	Work S/A	\$3,165.00	\$3,165.00					
	Net Total Change to Contract							

It is mutually agreed that the above stated prices are full and final compensation for all materials, equipment, labor, and incidentals necessary to complete the work addressed herein.

Original Contract Amount	\$3,016,945.84
Amount Added by Previous Supplemental Agreements:	\$0.00
Amount Added by this Supplemental Agreement:	\$13,546.20
Revised Contract Amount:	\$3,030,492.04

CLASS II ADVANCED AUTHORITY

Mississippi Department of Transportation Jackson, Mississippi

SM CO Number 001

SA Number 1

Project Number MP-1234-56(789)/123456301

NOW THEREFORE, An additional 14 Calendar Days will be added for the completion of this additional work.

Original Completion Date:	9/30/2016
Previous Calendar Days Added by Supplemental Agreements:	0
Additional Calendar Days Added by this Supplemental Agreement:	14
Revised Completion Date:	10/14/2016

NOW THEREFORE, WE, ABC Contractor, LLC, Contractor, and XYZ Insurance Company, Surety, hereby agree to said Supplemental Agreement consisting of the above mentioned items and prices and agree that this Supplemental Agreement is hereby made a part of the original contract to be performed under the specifications thereof, and that the original contract is in full force and effect, except insofar as it might be modified by this Supplemental Agreement.

This agreement in no way modifies or changes the original contract of which it becomes a part, except as specifically stated herein.

WE FURTHER AGREE that, in consideration of the promises from the Commission herein, we, the Contractor, covenant and agree to release, discharge, and acquit the Mississippi Transportation Commission, the Mississippi Department of Transportation, their employees, servants, contractors, attorneys, agents, and any and all other persons, firms and corporations who may be in any manner liable therefore, from any and all actions, causes of action, claims and demands for any loss or any right arising under any law whatsoever, which was heretofore or may hereafter be sustained by the undersigned as a result of the circumstances or claim addressed in this Supplemental Agreement. In addition, we, the Contractor, will specifically indemnify and hold harmless the Commission and MDOT from any claim or action brought by a subcontractor working under the Contractor based on the circumstances contemplated in this Supplemental Agreement. The purpose of this Supplemental Agreement is to terminate any further expense or controversy against the Commission which could be made concerning the matters described herein. However, both the Commission and Contractor expressly reserve all rights of action, claims and demands against any and all other parties, known and unknown, not joined to this Supplemental Agreement. We, the Contractor, intend to completely, finally, irrevocably, and forever release, forgive, remise, acquit, and discharge any and all claims against the Commission and MDOT that relate to, arise from, or are in any manner connected to the matters as provided herein, and this Supplemental Agreement shall remain in effect as a complete and final waiver, forgiveness, and discharge of those matters against the Commission and MDOT.

CSD-720

Construction Manual Sheet 3 of 3

CLASS II ADVANCED AUTHORITY

Jackson, Mississippi		SM CO Number <u>001</u> Project Number MP-	SA Number <u>1</u> 1234-56(789)/123456301		
	XYZ Insurance Company			ABC Contractor, LLC	
	Surety		_	Contractor	
By:	N/A			N/A	
	Surety	Date	_	Contractor	Date
Recommendat	ion For Approval:				
Resid	dent/Project Engineer	Date	_		
Approved:					
	District Engineer	Date	_		

This has been discussed with Construction Division (Smith), District Construction (Jones).

Supplemental Sheet

		Supplemental Sheet		
•••••	tment of Transportation	SM CO Number 001	SA Number 1	
Jackson, Mississip	וקנ			
Project Number	MP-1234-56(789)/1234563	301		
County	JACKSON			

DETAILED EXPLANATION OF NECESSITY OF WORK INVOLVED:

Due to the rapidly deteriorating condition of Highway 53 from I-59 South 8.44 Miles and the availability of funds to complete the work under this contract, the District Maintenance Division requested that the Contractor proceed with scrub sealing along the route. Because the pay items for mobilization and maintenance of traffic are lump sum items, additional associated pay items are needed to account for the additional expenses involved with work on this route.

Regarding additional time added to the contract:

The request for this additional work was made six days following the completion of the work under the Original Contract. Furthermore, an additional two days will be required to mobilize personnel and equipment to accomplish the work. An additional six days will be required to seal the roadway and place final striping.

Project Engineer

JUSTIFICATION OF UNIT PRICES SUBMITTED:

The Contractor submitted cost breakdowns for the additional mobilization and maintenance of traffic. Those costs were compared with costs associated with other segments of roadway that were part of the Original Contract and were found to be acceptable.

Project Engineer

DETAILED ANALYSIS OF UNIT PRICES:

See MDOT Construction Division Attachment

CLASS II SUPPLEMENTAL AGREEMENT

Mississippi Department of Transportation Jackson, Mississippi

SM CO Number 001 SA Number 1

Project Number MP-1234-56(789)/123456301

WE, ABC Contractor, LLC (Contractor) and the Mississippi Transportation Commission (the Commission) hereby enter into this Class II Supplemental Agreement as follows:

- WHEREAS: ABC Contractor, LLC and XYZ Insurance Company, Surety, entered into a Contract with the Commission on the 25th day of May 2016, for the construction of Federal Aid Project No. MP-1234-56(789)/123456301, in Jackson County;
- **WHEREAS:** ABC Contractor, LLC assigned all of its rights and obligations under the Contract to Contractor, which assignment was approved by both the Commission and XYZ Insurance Company, as Surety;
- **WHEREAS:** An additional section of roadway was added to the project along Hwy 53 from I-59 south 8.44 miles. This additional work was requested by the District Maintenance Division of MDOT, and;
- WHEREAS: The Contractor has requested additional compensation for Mobilization and Maintenance of Traffic, and;
- **WHEREAS:** The Contractor has requested additional Contract Time to account for the delay by MDOT in ordering this additional work and the time required to complete said additional work, and;
- **WHEREAS:** The number of days requested for the delay and the number of days requested for completion of the added work are 6 and 8 days respectively for a total of 14 Calendar Days to be added to the Original Completion Date, and;
- WHEREAS: MDOT has reviewed the request for additional time and compensation and found it to be acceptable, and;
- **NOW THEREFORE,** It is mutually agreed and understood that the work will be accomplished under the following pay items and unit prices:

Pay Item No.	Description	Unit	Quantity	Unit Price	Total
620-A001	Mobilization, Additional for Extra Work S/A	LS	1.00	\$10,381.20	\$10,381.20
907-618-	Maintenance of Traffic, Additional for Extra				
A001	Work S/A	LS	1.00	\$3,165.00	\$3,165.00
Net Total Change to Contract					

It is mutually agreed that the above stated prices are full and final compensation for all materials, equipment, labor, and incidentals necessary to complete the work addressed herein.

Original Contract Amount	\$3,016,945.84
Amount Added by Previous Supplemental Agreements:	\$0.00
Amount Added by this Supplemental Agreement:	\$13,546.20
Revised Contract Amount:	\$3,030,492.04

CLASS II SUPPLEMENTAL AGREEMENT

Mississippi Department of Transportation Jackson, Mississippi

SM CO Number 001

SA Number 1

Project Number MP-1234-56(789)/123456301

NOW THEREFORE, An additional 14 Calendar Days will be added for the completion of this additional work.

Original Completion Date:	9/30/2016
Previous Calendar Days Added by Supplemental Agreements:	0
Additional Calendar Days Added by this Supplemental Agreement:	14
Revised Completion Date:	10/14/2016

NOW THEREFORE, WE, ABC Contractor, LLC, Contractor, and XYZ Insurance Company, Surety, hereby agree to said Supplemental Agreement consisting of the above mentioned items and prices and agree that this Supplemental Agreement is hereby made a part of the original contract to be performed under the specifications thereof, and that the original contract is in full force and effect, except insofar as it might be modified by this Supplemental Agreement.

This agreement in no way modifies or changes the original contract of which it becomes a part, except as specifically stated herein.

WE FURTHER AGREE that, in consideration of the promises from the Commission herein, we, the Contractor, covenant and agree to release, discharge, and acquit the Mississippi Transportation Commission, the Mississippi Department of Transportation, their employees, servants, contractors, attorneys, agents, and any and all other persons, firms and corporations who may be in any manner liable therefore, from any and all actions, causes of action, claims and demands for any loss or any right arising under any law whatsoever, which was heretofore or may hereafter be sustained by the undersigned as a result of the circumstances or claim addressed in this Supplemental Agreement. In addition, we, the Contractor, will specifically indemnify and hold harmless the Commission and MDOT from any claim or action brought by a subcontractor working under the Contractor based on the circumstances contemplated in this Supplemental Agreement. The purpose of this Supplemental Agreement is to terminate any further expense or controversy against the Commission which could be made concerning the matters described herein. However, both the Commission and Contractor expressly reserve all rights of action, claims and demands against any and all other parties, known and unknown, not joined to this Supplemental Agreement. We, the Contractor, intend to completely, finally, irrevocably, and forever release, forgive, remise, acquit, and discharge any and all claims against the Commission and MDOT that relate to, arise from, or are in any manner connected to the matters as provided herein, and this Supplemental Agreement shall remain in effect as a complete and final waiver, forgiveness, and discharge of those matters against the Commission and MDOT.

CSD-720

Construction Manual Sheet 3 of 3

CLASS II SUPPLEMENTAL AGREEMENT

Mississippi De Jackson, Miss	partment of Transportation issippi		SM CO Number 001 Project Number MP		SA Number <u>1</u> 3456301	
	XYZ Insurance Company			ABC C	Contractor, LLC	
	Surety		_		Contractor	
Ву:						
	Surety	Date	_	Cont	tractor	Date
Recommendat	ion For Approval:					
Resi	dent/Project Engineer	Date	_			
Approved:						
	District Engineer	Date	_			

This has been discussed with Construction Division (Smith), District Construction (Jones).

CSD-720					Sheet 1 of 1
		Supplemental Sheet			
Mississippi Depart Jackson, Mississip	ment of Transportation pi	SM CO Number 001	SA Number	1	
Project Number	MP-1234-56(789)/1234563	301			

County JACKSON

DETAILED EXPLANATION OF NECESSITY OF WORK INVOLVED:

Due to the rapidly deteriorating condition of Highway 53 from I-59 South 8.44 Miles and the availability of funds to complete the work under this contract, the District Maintenance Division requested that the Contractor proceed with scrub sealing along the route. Because the pay items for mobilization and maintenance of traffic are lump sum items, additional associated pay items are needed to account for the additional expenses involved with work on this route.

Regarding additional time added to the contract:

The request for this additional work was made six days following the completion of the work under the Original Contract. Furthermore, an additional two days will be required to mobilize personnel and equipment to accomplish the work. An additional six days will be required to seal the roadway and place final striping.

Project Engineer

JUSTIFICATION OF UNIT PRICES SUBMITTED:

The Contractor submitted cost breakdowns for the additional mobilization and maintenance of traffic. Those costs were compared with costs associated with other segments of roadway that were part of the Original Contract and were found to be acceptable.

Project Engineer

DETAILED ANALYSIS OF UNIT PRICES:

See MDOT Construction Division Attachment

Sheet 1 of 2

Quantity Adjustment

10/31/2016

1. SM CO Number	001	2. Project Number	MP-1234-56(789)/123456301
4. QA Number	1	3. County	Jackson

5. The following adjustments on the above project, with stations, quantities and items involved, are recommended for the reasons stated in detail. (Attach additional pages if necessary)

Additional work was added to project on SR 53 in Harrison County

Pay Item	Item Description	Explanation
620-A001	Mobilization S/A	Additional for added section of roadway.
907-618-A001	Maintenance of Traffic S/A	Additional for added section of roadway.

Pay Item	Item Description	Original Quantity	Final Quantity	Increase/ Decrease	Unit Price	Unit	Amount
620-A001	Mobilization S/A	0.000	1.000	increase	\$10,381.20	LS	\$10,381.20
907-618-A001	Maintenance of Traffic S/A	0.000	1.000	increase	\$3,165.00	LS	\$3,165.00
	Net Total Change to Contract						\$13,546.20

Quantity Adjustment

10/31/2016

Sheet 2 of 2

1. SM CO Number	001	2. Project Number	MP-1234-56(789)/123456301				
4. QA Number	1	3. County	Jackson				
6. Total Estimate	ed Cost Per Estimate Dated	10/31/2016	\$3,016	,945.84			
5.00 % Eng	ineering & Contingencies		\$150	,754.16			
Con	struction		\$3,016	,945.84			
7. Previous Quar	ntity Adjustments			\$0.00			
8. This Quantity	Adjustment		\$13	,546.20			
Total Construc	ction Cost		\$3,030	,492.04			
Maximum Eng	ineering	5.00 %	\$150	,754.16			
Engineering S	pent as of	09/02/2016	\$1	,530.79			
Project Percen	nt Complete	3.57 %	\$107,	704.97			
Estimated Eng	jineering to Complete		\$135	,677.17			
9. Total Estimate	ed Engineering		\$137	,207.96			
10. Revised Tota	al Estimated Cost of Project		\$3,016	,900.00			

Construction Engineering will be adjusted in direct proportion to changes in construction items.

Approval Requested

Resident/Project Engineer

Approved

Approved

By

District Engineer

Sheet 1 of 2

CLASS III SUPPLEMENTAL AGREEMENT

Mississippi Department of Transportation Jackson, Mississippi

SM CO Number 002

SA Number 1

Project Number NH-1234-56(789)/123456303

WE, ABC Contractor, Inc. (Contractor) and the Mississippi Transportation Commission (the Commission) hereby enter into this Class III Supplemental Agreement as follows:

- **WHEREAS:** ABC Contractor, Inc. and XYZ Insurance Company, Surety, entered into a Contract with the Commission on the 22nd day of February 2016, for the construction of Federal Aid Project No. NH-1234-56(789)/123456303, in Jackson County;
- **WHEREAS:** ABC Contractor, Inc. assigned all of its rights and obligations under the Contract to Contractor, which assignment was approved by both the Commission and XYZ Insurance Company, as Surety;
- **WHEREAS:** The Mississippi Department of Transportation (MDOT) and the Contractor agree that potentially hazardous conditions exist within the project limits in the form of subsurface voids, AND;
- **WHEREAS:** MDOT and the Contractor agree that the potential hazards exist at the locations of each of the bridge end sections (12) within the project limits, AND;
- **WHEREAS:** MDOT and the Contractor agree that the subsurface voids must be filled and fortified prior to the initiation of Phase 2 of construction, AND;
- **WHEREAS:** MDOT and the Contractor agree that the subsurface voids shall be safeguarded by means of high strength foam injection, AND;
- **WHEREAS:** The unit prices for this additional work and associated maintenance of traffic submitted by the Contractor have been reviewed by MDOT and the Federal Highway Administration (FHWA) and have been deemed acceptable based on the average bid price data of the state and cost breakdowns submitted by the Contractor, AND;
- WHEREAS: MDOT and the Contractor agree that Phase 2 of Construction will be delayed in order to perform this work, AND;
- **WHEREAS:** MDOT and the Contractor agree that eight (8) additional days shall be added to the contract due the nature of the work adversely affecting the initiation of Phase 2, AND;
- **NOW THEREFORE,** The revised completion date shall be January 9, 2018 after the eight (8) additional days are added to the original completion date of January 1, 2018, AND;
- **NOW THEREFORE,** It is mutually agreed and understood that the work will be accomplished under the following pay items and unit prices:

Pay Item	Project	Quantity	Unit Price	Unit Price Unit Amount		Item Description
907-420-A002	101204-303000	43,680.00	\$8.10	LBS	\$353,808.00	Undersealing S/A
907-618-A001	101204-303000	1.00	\$14,444.50	LS	\$14,444.50	Maintenance of Traffic S/A
			\$368,252.50			

This agreement in no way modifies or changes the original contract of which it becomes a part, except as specifically stated herein.

Sheet 2 of 2

CSD-720

CLASS III SUPPLEMENTAL AGREEMENT

Mississippi Department of Transportation Jackson, Mississippi

SM CO Number 002

SA Number 1

Project Number NH-1234-56(789)/123456303

WE FURTHER AGREE that, in consideration of the promises from the Commission herein, we, the Contractor, covenant and agree to release, discharge, and acquit the Mississippi Transportation Commission, the Mississippi Department of Transportation, their employees, servants, contractors, attorneys, agents, and any and all other persons, firms and corporations who may be in any manner liable therefore, from any and all actions, causes of action, claims and demands for any loss or any right arising under any law whatsoever, which was heretofore or may hereafter be sustained by the undersigned as a result of the circumstances or claim addressed in this Supplemental Agreement. In addition, we, the Contractor, will specifically indemnify and hold harmless the Commission and MDOT from any claim or action brought by a subcontractor working under the Contractor based on the circumstances contemplated in this Supplemental Agreement. The purpose of this Supplemental Agreement is to terminate any further expense or controversy against the Commission which could be made concerning the matters described herein. However, both the Commission and Contractor expressly reserve all rights of action, claims and demands against any and all other parties, known and unknown, not joined to this Supplemental Agreement. We, the Contractor, intend to completely, finally, irrevocably, and forever release, forgive, remise, acquit, and discharge any and all claims against the Commission and MDOT that relate to, arise from, or are in any manner connected to the matters as provided herein, and this Supplemental Agreement shall remain in effect as a complete and final waiver, forgiveness, and discharge of those matters against the Commission and MDOT.

XYZ Insurance Company		ABC Contractor, Inc.
Surety		Contractor
Ву:	Date	Date
	Dute	Dute
Recommendation For Approval:		
District Engineer	Date	FHWA Approval Date
State Construction Engineer	Date	Chief Engineer Date
Approved:		
Mississippi Transportation Commission		
Ву:		
Executive Director	Date	

This has been discussed with Assistant District Engineer - Construction (Jones), Construction Division Area Engineer (Smith), and FHWA Engineer (Davis).

Sheet 1 of 1

Supplemental Sheet

Mississippi Department of Transportation	SM CO Number 002	SA Number	1
Jackson, Mississippi			

Project Number NH-1234-56(789)/123456303

County JACKSON

DETAILED EXPLANATION OF NECESSITY OF WORK INVOLVED:

Undersealing subsurface voids is a proven effective method to safeguard hazards caused by subsurface voids. The material goes in as a liquid and, in the expansion process, seeks and fills all voids. The material bonds to the abutment and wingwalls and infiltrates into the soils to eliminate a path for water to travel under the slab. The material will provide a seal to prevent erosion and washouts of the slope under the bridge cap. Due to the fast reaction curve, the lightweight foam material is controllable in its travel and does not place additional load on potentially overburdened soils. The material being used in this case is environmentally inert, has NSF-61 certification, and has an anticipated life of greater than 100 years.

Regarding additional time added to the contract:

Through negotiations with MDOT, fourteen (14) days were reduced to eight (8). This includes 2 days for mobilization and delivery of materials and 6 days to complete the foam sealing in one direction of travel. This will allow the contractor to begin widening operations while foam sealing is completed in the opposite direction.

Project Engineer

JUSTIFICATION OF UNIT PRICES SUBMITTED:

This Unit Prices have been analyzed by MDOT Construction Division, declared comparable to the state average unit costs of the same, and accepted as predicated in this Supplemental Agreement.

Project Engineer

DETAILED ANALYSIS OF UNIT PRICES:

See MDOT Construction Division Attachment

Quantity Adjustment

5/6/2016

 1. SM CO Number
 002
 2. Project Number
 NH-1234-56(789)/123456303

4. QA Number 1 3. County JACKSON

5. The following adjustments on the above project, with stations, quantities and items involved, are recommended for the reasons stated in detail. (Attach additional pages if necessary)

	Pay Item	Item Description	Explanation
9	907-420-A002	Undersealing S/A	Necessary to fill voids under existing bridge end slabs.
9	907-618-A001	Maintenance of Traffic S/A	Additional lane closures required to complete Undersealing.

Pay Item	Item Description	Original Quantity	Final Quantity	Increase/ Decrease	Unit Price	Unit	Amount
907-420-A002	Undersealing S/A	0.000	43680.000	increase	\$8.10	LBS	\$353,808.00
907-618-A001	Maintenance of Traffic S/A	0.000	1.000	increase	\$14,444.50	LS	\$14,444.50
Net Total Change to Contract							\$368,252.50

5/6/2016

Quantity Adjustment

Sheet :	2 of	2
---------	------	---

1. SM CO Number	002	2. Project Number	NH-1234-56(789)/123	456303
4. QA Number 1		3. County	JACKSON	
6. Total Estima	ted Cost Per Estimate Dated	03/08/2016		\$47,442,200.00
15.00 % En	gineering & Contingencies			\$7,907,005.50
Co	onstruction			\$39,535,194.50
7. Previous Qua	antity Adjustments			\$0.00
8. This Quantity	y Adjustment			\$368,252.50
Total Constru	uction Cost			\$39,903,447.00
Maximum En	gineering	15.00 %		\$7,907,005.50
Engineering	Spent as of	05/03/2016		\$6,095.07
Project Perce	ent Complete	.00 %		\$1,149.41
Estimated Er	ngineering to Complete			\$7,532,657.93
9. Total Estima	ted Engineering			\$7,538,753.00
10. Revised Tot	tal Estimated Cost of Project			\$47,442,200.00

Construction Engineering will be adjusted in direct proportion to changes in construction items.

Approval Requested

Resident/Project Engineer

Approved

Approved

By

District Engineer

Federal Highway Administration

CSD-723 rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

REPORT OF SEEDS APPLIED

Project No.(s)											
County(s)											
			TYPES					RATES			
	1							LBS.	/ ACRE		
	2							LBS. / ACRE			
	3							LBS. / ACRE			
	4							LBS.	/ ACRE		
LOCATIO STA. TO ST		ACRE(S)	DATE SOWN		SEED			SEED		REMARKS	
				ORDER	PAY	LOT NO.	ORDER	PAY	LOT NO.		

			ORDER	PAY	LOT NO.	ORDER	PAY	LOT NO.	
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
+	+								
	TOTALS								

Note: Seeds transferred from other projects should be explained in the remarks.

CSD-724 rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

SURFACE TREATMENT REPORT OF MATERIALS APPLIED

Report No. 1 of 1

 Project No.
 BR-0063-04(003) / 104484301 & 302

 County
 Greene and Perry

Inspector A. Walker

							lns	Inspector A. Walker	A. Walker										I	
						Bitumi	Bituminous Materia	rial									Aggregate			
Make of Distributor & Serial No	ibutor &	Distributor Model	' Model	Capacity - Calibration	Material Moved by Tank Truck No	Aoved by	Calibration Certified by	tion d by	Grade of Material	Satisfactory Card Numbers	ctory mbers	Total	Deduct	Net Gal. Allowed	Aggregate Size	e Aggregate Tvne	Total CY placed	Deduct Cubic Vards	t Net CY	
	ò			Chart				Án p			6 100111	Gallons		Contractor						г.
Etnyre S6927	927	Cent. II	=	2,000	Kenworth 2016	th 2016	MDOT D6	D6	A.C.			9,139	167	8,972	2 89	Stone	7,675	8	7,667	~
	Applied Material	Material	Width	Area Square			Stick Measure	easure		Net Gallons	Net	Spread Gallons	per Square	Asphalt Overshot	Cubic Yards	Spread s Cubic Feet		Aggregate Overshot		ž
Date Applied			Feet		Material °F	Bef	Before	Af	After	As Measured	Gallons at 60°F	per Square		(over 5% or 15% check if			Ordered +(5)%	(over 5% or 15% check if	or Key (1) (2) k if (etc.)	(2)
	Sta.	Sta.				In	Gals	In.	Gals.			Yard	Ordered	irregular)		Yard		irregular)		
9/12/2016	10+00	45+25	12	4,700	355	46	2,000	9	160	1,840	1,657.5	0.353	0.32	80	1,100	0.234	0.23	0		
9/13/2016	45+25	79+50	12	4,567	288	46	2,000	12	410	1,590	1,467.1	0.321	0.29	75	1,100	0.241	0.24	0		
9/14/2016	79+50	115+15	12	4,753	311	46	2,000	14	505	1,495	1,368.1	0.288	0.30	0	1,250	0.263	0.25	2		
9/15/2016	115+15	72+40	12	5,700	320	46	2,000	9	160	1,840	1,678.4	0.294	0.31	0	1,550	0.272	0.26	0		
9/18/2016	72+40	32+85	12	5,273	315	46	2,000	9	160	1,840	1,681.4	0.319	0.31	0	1,500	0.284	0.27	3		
9/19/2016	32+85	10+00	12	3,047	290	46	2,000	24	1,020	086	903.6	0.297	0.31	0	850	0.279	0.27	0		
9/19/2016	50+50	62+20	8	1,040	290	24	1,020	16	605	415	382.6	0.368	0.31	V 12	325	0.313	0.27	3	(1)	
		-									, ,]
Kemarks:	(T)	(1) turn lane									Pr	Prepared By:								
	(2)																			
	(3)										Project	Project Engineer:								
												•								

Construction Manual

November 7, 2016

Date:

(5)

CSD-761
Rev 6-18

MISSISSIPPI DEPARTMENT OF TRANSPORTATION TRAFFIC CONTROL INSPECTION REPORT

Project No / Route _ City / County _ Project Engineer _ Type of Operation _ Weather Condition _ Date of Inspection _ Time of Inspection _ Posted Speed _ Contractor _ Project T.C.S. / T.C.T _	MPH	
A. DRIVE THRU: Are maneuvers difficult or Adequate warning of haza Is signing clear/uncluttered Are traffic control devices Comments:	rds? d and properly spaced?	es 🔲 No es 🛄 No
B. SIGNS: Need to be removed/report Need cleaning/replacing Need additional signs Conflicting permanent/terr Non-approved sign suppo Blocked by vegetation Erected contrary to traffic Comments:	porary signing t control plans	es No es No es No
C. TRAFFIC BARRICADE Need cleaning/replacing Blocked by vegetation Erected contrary to traffic Comments:		es 🔲 No
D. PORTABLE CHANGE Use does not meet standa Inappropriate message Too much information on I Not delineated, no cones/I Not dimmed at night Comments:	rd application in plans P.C.M.S.	es No N/A es No N/A es No N/A
E. ARROW BOARD: Malfunction bulb out, etc. Incorrect placement Misaligned bulbs Not dimmed at night Comments:		es 🔲 No 🗍 N/A es 🔲 No 🛄 N/A
Appropriate taper length Adequate spacing Repair/clean/replacement	OTHER CHANNELIZING DEVICES:	es

G. TRAFFIC BARRIER				
Proper barrier wall flare				∐Yes ∐No ∐N/A
Proper terminal treatment				∐Yes ∐No ∐N/A
Barrier needs to be realigned /	removed			∐Yes ∐No ∐N/A
Warning light service/clean				Yes No N/A
Delineators clean/additional				∐Yes ∐No ∐N/A
Attenuator repair / replace				Yes No N/A
Barrier has been damaged by Comments:				Yes No N/A
H. FLAGGING OPERATION: ARE FLAGPERSONS:				
Certified?				∏Yes ∏No ∏N/A
Positioned correctly?				
Highly visible?				
Properly clothed?				TYes No N/A
Flagging correctly?				Yes No N/A
Comments:				
I. TRUCK MOUNTED ATTEN	JATOR:			
Properly positioned?				□Yes □No □N/A
Properly maintained / delineate				Yes No N/A
J. SAFETY:				
J. SAFETY: Adequate buffer space?				Yes No N/A
Is the work area protected?				
Materials properly stored?				$\Box Yes \Box No \Box N/A$
Equipment properly stored?				
Are lane closures in accordance	e with allowed	hours?		
Is there any unnecessary adve			ot holes humps debris etc.)?	
Is the edge drop-off appropriat				
			iate for field and geometric condition	
Comments:				
K. PAVEMENT MARKING:				
			Permanent	Temporary
Remove				
Repair				
Need additional			Yes No N	I/A Yes No N/A
Comments:				
L. PAVEMENT MARKERS:			Permanent	Temporary
Remove				
Replace missing				
Need additional				
Comments:				
Accidents:	_			
Evidence of an accident?	Yes	No		
Location				
Skid marks	Yes	□ No		
Location				
Comments / Recommendation	s:			
The Contractor has been notifi	ed of any defic	iencies in this report.		
	ed of any defic	iencies in this report.		
The Contractor has been notifi	-		Dete	
	ed of any defic		Date	

CSD-762

Rev 6/2018

MISSISSIPPI DEPARTMENT OF TRANSPORTATION CONTRACTOR'S TRAFFIC CONTROL INSPECTION REPORT

Project T.C.S. / T.C.T Project Engineer Type of Operation City / County Weather Condition Contractor			
Project No / Route Date of Inspection Time of Inspection Posted Speed	 — мрн		
Are traffic control devic	azards? ered and properly spaced?	☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes	□ No □ No □ No □ No
B. SIGNS: Need to be removed/re Need cleaning/replacin Need additional signs Conflicting permanent/r Non-approved sign sup Blocked by vegetation Erected contrary to traf Comments:	g remporary signing oport	☐Yes ☐Yes ☐Yes ☐Yes ☐Yes ☐Yes ☐Yes	No No No No No No No
C. TRAFFIC BARRICA Need cleaning/replacin Blocked by vegetation Erected contrary to traf Comments:	g	☐ Yes ☐ Yes ☐ Yes	□ No □ No □ No
	on P.C.M.S.	☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes	No N/A No N/A No N/A No N/A No N/A
E. ARROW BOARD: Malfunction bulb out, ei Incorrect placement Misaligned bulbs Not dimmed at night Comments:	ic.	☐ Yes ☐ Yes ☐ Yes ☐ Yes	□ No □ N/A □ No □ N/A □ No □ N/A □ No □ N/A
Appropriate taper lengt Adequate spacing Repair/clean/replaceme	ent ged / missing on drums / other devices	☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes ☐ Yes	No N/A No N/A No N/A No N/A No N/A No N/A

Comments:

G. TRAFFIC BARRIER								_	_
Proper barrier wall flare							Yes	No	□N/A
Proper terminal treatment							Yes	No	
Barrier needs to be realigned /	removed								□N/A
Warning light service/clean									
Delineators clean/additional Attenuator repair / replace							∐Yes ∏Yes	∏No ∏No	□N/A □N/A
Barrier has been damaged by a	age / weather / tr	affic							
Comments:	•	anc							
H. FLAGGING OPERATION:									
ARE FLAGPERSONS:									
Certified?							Yes	No	N/A
Positioned correctly?							Yes	No	N/A
Highly visible?							Yes	No	□ N/A
Properly clothed?							Yes	No	N/A
Flagging correctly?							∐Yes	No	N/A
Comments:									
I. TRUCK MOUNTED ATTENU	JATOR:								
Properly positioned?	40							∐ No □ No	
Properly maintained / delineate Comments:							Yes		□N/A
J. SAFETY:									
Adequate buffer space?							∏Yes	ΠNο	□N/A
Is the work area protected?							TYes		
Materials properly stored?							Yes	No	□N/A
Equipment properly stored?							Yes	ΠNο	□N/A
Are lane closures in accordance	e with allowed he	ours?					Yes	No	□N/A
Is there any unnecessary adve				bumps, de	ebris, etc.)?		Yes	No	N/A
Is the edge drop-off appropriate							☐ Yes	No	□N/A
Is the equipment lighting location				ld and geo	ometric cond	itions?	Yes	No	N/A
Comments:									
K. PAVEMENT MARKING:				r	Pormonont			Tempora	20
Remove					Permanent	N/A	TYes		
Repair									
Need additional				Yes		N/A	Yes		□ N/A
Comments:									
L. PAVEMENT MARKERS:									
Remove					Permanent	N/A		<u>Tempora</u> No	<u>ry</u> ∏n/A
Replace missing				∐Yes ∏Yes		N/A N/A	∐Yes ∏Yes		
Need additional						N/A			
Comments:									
Accidents:									
Evidence of an accident?	Yes	🗌 No							
Location									
Skid marks	Yes	No							
Location									
Comments / Recommendations	s:								
Inspected Div									
Inspected By:	Signature		Dat	te					
	Signaturo		Da						
Copy: Project Engineer									

CSD-765 Rev 01/2015

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

ASSESSMENT REPORT FOR AVAILABLE WORKING DAYS

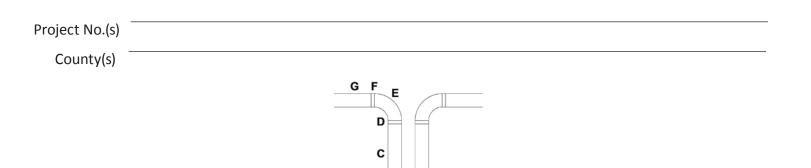
Date:	5/9/2017									
Project No:	EXB-1234-	56(78	9) / 1234	456301						
County:	CLARKE (1	2)								
PERIOD	4/1/2017				То	4/30/2017				
Apri	il	1	0				17	1		
Mont	h	2	0				18	1		
		3	0				19	1		
		4	0				20	1		
		5	0				21	1		
		6	1				22	0		
		7	1				23	0		
		8	1				24	1		
		9	0				25	1		
		10	1				26	1		
		11	1				27	0		
		12	1				28	1		
		13	1				29	0		
		14	1				30	0		
		15	0				31			
		16	0							
TOTAL WO	RKING DAY	S ASS	SESSED	DURING THIS PERIOD					17	
TOTAL WO	RKING DAY	s pre	EVIOUSL	LY ASSESSED				18	9.474	
TOTAL WO	RKING DAY	S ASS	SESSED)				20	6.474	
	RKING DAY	s all	OWED						189	
PERCENT	COMPLETE							109	.25 %	

 FOR CONTRACTOR USE
Contractor's Signature
IAgree /Disagree with the working days assessed during this period. If disagree is marked, please provide a written explanation.
The Contractor shall sign, mark appropriate box above, and return the original to the Project Engineer with a copy to MDOT

Construction Division, 401 North West Street, Jackson, MS 39201.

Project Engineer

Contractor Project File District Engineer


Original: Copies: MISSISSIPPI DEPARTMENT OF TRANSPORTATION

CSD-770 Rev. 6-17

Jackson, Mississippi

Pg. 1 of 2

EDGE DRAIN AND EDGE DRAIN OUTLET/VENT INSPECTION FORM

B A

							Distres	ss Obser	rvation		
							Pip	oe Secti	on		
Date	Route	Station	Direction of Travel	Distance Inspected	А	В	С	D	E	F	G
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									
		+									

CSD-	770
Rev.	6-17

County _____ Contractor _____

	Distress	Observatio	n
	6	c)	
1)	Sag	6)	Backfill in Pipe
2)	Sag w/Standing Water	7)	Separation at Coupling
3)	Sag w/Siltation	8)	Tear in Pipe
4)	Compressed Coupling	9)	Obstructions
5)	Compressed Pipe		

% Compressed	Video Tape Counter Number	Comments

Submitted by _____

Date _____

Construction Manual

Pg. 1 of 3

CSD-780 Rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

EROSION AND SEDIMENT CONTROL FIELD INSPECTION REPORT

Α.	
INSPECTION DATE	DATE OF LAST PRECIPITATION
PROJECT NO.(S)	
COUNTY(S)	
CONTRACTOR	AMOUNT OF PRECIPITATION SINCE LAST INSPECTION
CECP'S NAME	EROSION CONTROL SUB
ACCOMPANIED BY MDOT STAFF?	IE YES, NAME(S)
INSPECTION TYPE: WEEKLY PRE-RAIN EVENT	PRE-RAIN EVENT (required after $\frac{1}{2}$ " or more of rain)

Β.

	YES	NO	NA
HAVE ALL CORRECTIVE ACTIONS NECESSARY FROM PREVIOUS INSPECTION BEEN SATISFACTORILY TAKEN CARE OF?			
IS THE ECP ON-SITE?			
DOES THE ECP ACCURATELY REFLECT ALL THE CURRENT BMP'S?			
ARE ALL THE INSPECTIONS REPORTS COMPLETE AND ON-SITE?			
ARE THE CONTRACTOR'S OPERATIONS IN SEQUENCE WITH THE APPROVED ECP?			
ARE STOCKPILES PROPERLY MANAGED?			
ARE ROADWAYS CLEAR OF SEDIMENT?			
ARE STABILIZED CONSTRUCTION ENTRANCES IN PLACE PER THE ECP?			
HAVE MDEQ AND THE PE BEEN GIVEN PROPER NOTIFICATION OF ANY "UPSET" CONDITIONS SINCE THE PREVIOUS INSPECTION?			
HAS SEDIMENT BEEN DEPOSITED OUTSIDE THE ROW? IF YES, GIVE DETAILS IN THE COMMENTS SECTION ASSOCIATED WITH THE BMP WHICH FAILED.			
HAS SEDIMENT BEEN DEPOSITED INTO "WATERS OF THE US"? IF YES, GIVE DETAILS IN THE COMMENTS SECTION ASSOCIATED WITH THE BMP WHICH FAILED.			

COMMENTS			

EXCEPT FC AND DO N	DR THE INSTANC	EXCEPT FOR THE INSTANCES LISTED BELOW, ALL EROSION AND SE AND DO NOT REQUIRE MAINTENANCE OR CORRECTIVE ACTIONS.	W, ALL EROSI	ON AND SEDIN ACTIONS.	AENT CONTRC	ND SEDIMENT CONTROL BMP'S HAVE BEEN INSPECTED AND FOUND TO BE IN WORKING ORDER IONS.
BMP TYPE	APPROX	APPROX STATION	L or R of			
(SEE TABLE, PG. 3)	FROM	TO	CENTER	CONDITION*	SEDIMENT DEPOSITED**	COMMENTS OF CORRECTIVE ACTION
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
	+	+				
* A = ADDITIO ** ROW = OFF	NAL BMP NEEDEI RIGHT OF WAY; V	* A = ADDITIONAL BMP NEEDED; I = INCORRECT INSTALLATION OF ** ROW = OFF RIGHT OF WAY; WOS = INTO WATERS OF THE STATE	INSTALLATION ERS OF THE STA	OF EXISTING BN TE	MP; M = BMP N	* A = ADDITIONAL BMP NEEDED; I = INCORRECT INSTALLATION OF EXISTING BMP; M = BMP MAINTENANCE NEEDED; F = BMP FAILURE ** ROW = OFF RIGHT OF WAY; WOS = INTO WATERS OF THE STATE
D. <u>INSPECT</u> I CERTIFY 1	D. INSPECTION CERTIFICATION I CERTIFY THAT THIS DOCUMENT	TION IMENT IS A TRUE	E AND ACCURA	TE REPRESENT	ATION OF THE	INSPECTION CERTIFICATION I CERTIFY THAT THIS DOCUMENT IS A TRUE AND ACCURATE REPRESENTATION OF THE CONDITIONS REFLECTED ON THIS PROJECT AT THE TIME OF THE INSPECTION.
		CECP				Date

C. EROSION AND SEDIMENT CONTROL BMP'S INSPECTED

F-53

	BMP TYPE TABLE						
NUMBER	BMP	NUMBER	BMP				
1	ABOVE GROUND STORAGE TANK (AST)	27	SANITARY FACILITIES				
2	BRUSH BARRIER	28	SEDIMENT RETENTION BARRIER				
3	CHEMICAL FLOCCULATION (PAM)	29	SILT BAGS (DEWATERING BAGS)				
4	CHEMICAL SOIL STABILIZATION (PAM OR POLYACRYLAMIDE)	30	SILT FENCE				
5	CHEMICAL STORAGE	31	SLOPE EROSION (RILL & GULLY)				
6	CLEARWATER DIVERSION CHANNEL	32	SLOPE SURFACE ROUGHENING (SLOPE TRACKING)				
7	CONCRETE WASHOUTS	33	SOLID WASTE (TRASH)				
8	CONSTRUCTION DEBRIS	34	SPILL DETECTION				
9		35	STABILIZED CONSTRUCTION ENTRANCE/EXIT				
10	DETENTION POND	36	STOCKPILE PROTECTION				
11	DITCH LINER	37	STRAW BALE CHECKS				
12	DITCHLINE EROSION	38	STREAM BANK EROSION				
13	DUST CONTROL	39	SUPER SILT FENCE				
14	EROSION CONTROL BLANKET (ECB)	40	TEMPORARY EARTHEN BERM				
15	FILTER STONE ROCK CHECK (FILTER STONE CHECK DAM)	41	TEMPORARY MULCH (STRAW MULCH, ETC.)				
16	ILLICIT DISCHARGE	42	TEMPORARY SEDIMENT BASIN (SILT BASIN)				
17	INLET PROTECTION	43	TEMPORARY SEDIMENT TRAP				
18		44	TEMPORARY STREAM CROSSING				
19	OUTLET PROTECTION (ENERGY DISSIPATER)	45	TEMPORARY STREAM DIVERSION CHANNEL (BOX CULVERTS)				
20	PAVED DITCHING	46	TEMPORARY VEGETATION				
21	PERMANENT SEDIMENT BASIN	47	TOPSOILING				
22	PERMANENT VEGETATION	48	TRIANGULAR SILT DIKE				
23	RETENTION POND	49	TURBIDITY BARRIER				
24	RIP-RAP ARMORING	50	TURF REINFORCEMENT MAT (TRM)				
25	ROCK BAGS (SAND BAGS)	51	VEGATATIVE BUFFER ZONE				
26	ROCK CHECK (CHECK DAM)	52	VEGETATED FILTER STRIP (SOD)				
		53	WATTLES				

Instructions:

1. Fill out the form

2. Use the numbers in the BMP TYPE table to identify the applicable BMP in each row of the Table in C.

CSD-880
Rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

WORKSHEET FOR FUEL PRICE ADJUSTMENT

PROJECT NO. NH-0059-01(023) 301301

COUNTY Lauderdale

	DIESEL	GASOLINE
CONTRACT BASE PRICE PER GALLON	3.1258	2.2658

 ESTIMATED PERIOD
 5/1/2017
 TO
 5/30/2017

			FUEL P	ER UNIT	TOTAL FUE	EL PER ITEM
ITEM	UNIT	QUANTITY	DIESEL	GASOLINE	DIESEL	GASOLINE
403-B Hot Mix 12.5mm MT	Ton	10,000.00	0.0123	0.0234	123	234
401-C Hot Mix 19mm MT	Ton	15,000.00	0.0123	0.0234	184.5	351
			TO	TAL FOR PERIOD	307.5	585

DIESEL 2.1258	GASOLINE 2.2068
-1.0000	-0.0590
\$ (307.50)	\$ (34.52)
	\$ (342.02)
Submitted by	
Date	
	2.1258 -1.0000 \$ (307.50) Submitted by

CSD-881 Rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

WORKSHEET FOR MATERIAL PRICE ADJUSTMENT

PROJECT NUMBER HISP-0022-00(023) 301301-100

COUNTY	Jasper			
MATERIAL	AC-30			
CONTRACT BASE PRICE	3.1258			
ESTIMATED PERIOD	7/1/2017	то	7/25/2017	

				MATERIAL PER	TOTAL MATERIAL
ITEM NO	ITEM DESCRIPTION	QUANTITY	UNIT	UNIT	PER ITEM
403-B	Hot Mix 12.5mm MT	10,000.00	Ton	0.055	550
401-C	Hot Mix 19mm MT	15,000.00	Ton	0.048	720
				TOTAL MATERIAL	1270

BASE PRICE FOR CURRENT PERIOD	 3.3253
PRICE DIFFERENTIALS	 0.1995
ADJUSTMENTS = TOTAL MATERIAL x PRICE DIFFERENTIALS	\$ 253.37
ADJUSTMENT FOR FUEL AND OTHER MATERIALS	
TOTAL ADJUSTMENT	\$ 253.37

NOTE: SITE MANAGER PERFORMS **ALL** REQUIRED FUEL AND MATERIAL ADJUSTMENTS. THIS FORM IS ONLY USED TO CORRECT THE FUEL ADJUSTMENT MANUALLY IF DATA ENTRY ERRORS WERE MADE.

MDOT MRI Smoothness Pav Incentive Report - Asphalt

	<u>I IVINI SITIOOUTITESS PAY ITICETUUVE KEPUTU - ASPITATU</u>
Project Number:	Example
District:	District
County:	County
Route:	Route
Surface Lift Thickness (inches):	1.50
Lane Width (feet):	12.00
Asphalt Unit Price (dollars/ton):	\$85.00
Total Net Length (miles)	8.250
Total Price Adjustment	\$10,127.78

03.03.2016.14

4.0

Version

Pavement Category A

100% PAY THRESHOLD = 60 inches/mile

Example Project:

NB 1 Section/Lane:

591.03 Section Length (feet) = ____ Total Section Tonnage =

5,372.97

Tonnage	Price Before Adjustment	Price After Adjustment	Difference
0.00	\$0.00	\$0.00	\$0.00
0.00	\$0.00	\$0.00	\$0 [.] 00
0.00	\$0.00	\$0.00	\$0 [.] 00
0.00	\$0.00	\$0.00	\$0.00
0.00	\$0.00	\$0.00	\$0.00
0.00	\$0.00	\$0.00	\$0.00
0.00	\$0.00	\$0.00	\$0.00
0.00	\$0.00	00 [.] 0\$	00 [.] 0\$
11.50	\$977.33	\$781.86	-\$195.47
19.23	\$1,634.72	\$1,307.77	-\$326.95
14.62	\$1,243.12	\$1,056.65	-\$186.47
13.88	\$1,179.79	\$1,061.81	-\$117.98
6.32	\$537.40	\$510.53	-\$26.87
64.62	\$5,492.39	\$5,492.39	\$0.00
158.83	\$13,500.19	\$13,500.19	\$0.00
151.95	\$12,916.12	\$13,174.44	\$258.32
139.23	\$11,834.64	\$12,308.02	\$473.38
10.84	\$921.50	¢7.976\$	\$55 . 29
0.00	\$0.00	\$0.00	\$0.00
0.00	\$0.00	\$0.00	\$0 [.] 00
0.00	\$0.00	\$0.00	\$0 [.] 00
0.00	\$0.00	\$0.00	\$0 [.] 00
0.00	\$0.00	\$0.00	\$0 [.] 00
0.00	\$0.00	\$0.00	\$0 [.] 00
0,00	\$0,00	20.00	\$0.00

	ProVAL Long Continuous Histogram	inuous Histogram	ſ
Max MRI (in/mi)	Min MRI (in/mi)	Bejore Grinding 1%)	Before Grinaing (#)
8	120	0	0
120	115	0	0
115	110	0	0
110	105	0	0
105	100	0	0
100	95	0	0
56	06	0	0
06	85	0	0
85	80	1.945435	104.5291
08	75	3.254001	174.839
75	70	2.4745	132.9561
02	65	2.348454	126.1835
65	60	1.069741	57.47766
09	55	10.93291	587.4306
22	50	26.87288	1443.892
50	45	25.71026	1381.424
45	40	23.55751	1265.756
40	35	1.834315	98.55859
35	30	0	0
30	25	0	0
25	20	0	0
20	15	0	0
15	10	0	0
10	5	0	0
5	0	0	0

-\$66.75

Total

MISSISSIPPI DEPARTMENT OF TRANSPORTATION OFFICE OF CIVIL RIGHTS JACKSON, MISSISSIPPI

CERTIFICATION OF PAYMENTS TO DBE FIRMS

Project No: _____

County:

Prime Contractor:

Address: _____

THIS IS TO CERTIFY THAT PAYMENT IN FULL HAS BEEN MADE TO ALL DBE FIRMS UTILIZED OVER THE LIFE OF THE CONTRACT. IN ADDITION TO LISTING THE AMOUNT PAID, IF THE DBE FIRM WAS ORIGINALLY LISTED TO MEET A GOAL, PLEASE PROVIDE THE ORIGINAL COMMITMENT AMOUNT. THE COMMITMENT AMOUNT CAN BE FOUND ON THE OCR-481 FORM THAT IS A PART OF THE CONTRACT DOCUMENT.

Firm Name	R/N	R/C	Commitment	Paid
	-		Total Paid:	\$0.00
			Contract Total:	
			% Total Bid:	

Submitted by

Approved by DBE Coordinator

Date

Title

Date

If the paid amount is less than the commitment amount, please provide explanation for the under-payment.

cc: Office of Civil Rights (DBE Coordinator) Project Engineer

YES

NO

MISSISSIPPI DEPARTMENT OF TRANSPORTATION OFFICE OF CIVIL RIGHTS JACKSON, MISSISSIPPI

COMMERCIALLY USEFUL FUNCTION PERFORMANCE REPORT

DEFINITION OF A " CUF " IS DESCRIBED IN FEDERAL REGULATION 49CFR 26.55 AS FOLLOWS : A <u>COMMERCIALLY USEFUL FUNCTION</u> HAS BEEN PERFORMED WHEN A DBE IS RESPONSIBLE FOR THE EXECUTION OF A DISTINCT ELEMENT OF THE WORK OF A CONTRACT BY ACTUALLY MANAGING , PERFORMING, AND SUPERVISING THE WORK INVOLVED .

PRIME CONTRACTOR :

A. SUBCONTRACT INFORMATION : PROJECT NUMBER :

COUNTY :

DBE FIRM :

FIRST DATE ON-SITE :

DBE FIRM 'S ON SITE SUPERVISOR 'S NAME :

LIST EACH ITEM OF WORK TO BE PERFORMED FOR DBE CREDIT. (SEE OCR-481 IN CONTRACT.)

- B. PROJECT OFFICES ARE TO CONDUCT EVALUATIONS AND SUBMIT COMPLETED REPORTS WHENEVER PRIME/DBE WORK PRACTICES ARE DISCOVERED OR SUSPECTED TO BE OUT OF COMPLIANCE WITH THE APPROVED DBE PROGRAM AND ALSO WHEN WORK APRROVED FOR EACH DBE FIRM IS AT OR NEAR 50 PERCENT COMPLETE. IF ANY QUESTIONS ARE ANSWERED <u>"NO"</u>, PLEASE EXPLAIN BELOW.
- 1. IS DBE FIRM ACCOMPLISHING THE WORK WITH THEIR OWN WORK FORCE :
- 2. IS DBE FIRM USING THEIR OWN EQUIPMENT?
- 3. IS ANY ADDITIONAL EQUIPMENT RENTED / LEASED? (CHECK RENTAL AGREEMENT)
- 4. DOES THE DBE FIRM HAVE A FOREMAN / SUPERINTENDENT ON JOB WHILE WORK IS BEING PERFORMED ?
- 5. DOES THE DBE FIRM HAVE ADEQUATE PERSONNEL ON JOB TO PERFORM THEIR WORK
 - ITEMS ?
- 6. IS THE DBE 'S FIRM WORK FORCE ADEQUATELY TRAINED AND COMPETENT ENOUGH TO PERFORM THEIR ITEMS OF WORK INDEPENDENTLY?
- 7. IS DBE FIRM FURNISHING THEIR OWN MATERIALS FOR EACH ITEM OF WORK?

COMMENTS :	ENTS :					

SUBMIT REPORT WHEN WORK IS 50 % COMPLETED OR WHENEVER PRIME/DBE WORK PRACTICES ARE DISCOVERED OR SUSPECTED TO BE OUT OF COMPLIANCE WITH THE APPROVED DBE PROGRAM

DATE

DATE

INSPECTED BY

PROJECT ENGINEER

DISTRIBUTION : PC : DBE COORDINATOR PRIME CONTRACTOR DISTRICT ENGINEER DBE SUBCONTRACTOR

MISSISSIPPI DEPARTMENT OF TRANSPORTATION OFFICE OF CIVIL RIGHTS JACKSON, MISSISSIPPI

CERTIFICATION OF PAYMENTS TO SUBCONTRACTORS

Project No: _____ County: _____

Prime Contractor:

Project Engineer:

THIS IS TO CERTIFY THAT PAYMENT HAS BEEN MADE TO THE FOLLOWING SUBCONTRACTING FIRMS FOR THE AMOUNT INDICATED FOR WORK PERFORMED OR MATERIALS/SUPPLIES PURCHASED, ON THE REFERENCED PROJECT TO SATISFY THE DBE REQUIREMENTS. *** THIS REPORT IS SUBJECT TO AUDIT ***

Prime Contractor	Date of Payment	Amount Paid This Period	Total Paid to Date
DBE 🔲 Yes / 🔲 No			

DBE Firm (listed on OCR- 481 to meet Project Goal)	Type of Firm	Date of Payment	Amount Paid This Period	Total Paid to Date	Amount of Retainage Withheld	Amount of Retainage Paid	Percent of Retainage Paid	% Sub- Contract Complete

DBE Firm (not listed on OCR- 481 to meet Project Goal)	Type of Firm	Date of Payment	Amount Paid This Period	Total Paid to Date	Amount of Retainage Withheld	Amount of Retainage Paid	Percent of Retainage Paid	% Sub- Contract Complete

Non-DBE Firm	Type of Firm	Date of Payment	Amount Paid This Period	Total Paid to Date	Amount of Retainage Withheld	Amount of Retainage Paid	Percent of Retainage Paid	% Sub- Contract Complete

Submitted by

Total DBE Project Goal:

Date: _____

Title

*** INSTRUCTIONS ***

Contractor must submit this report for EVERY PROJECT each month to the Project Engineer. 1.

2. If no payments are made this period, submit a negative or no change report to the Project Engineer.

The Project Engineer will attach a copy of the OCR-484 to the Monthly Estimate; Project Engineer will submit original to the Office of Civil Rights. 3.

4. Progress estimates will be withheld if Contractor fails to submit OCR-484.

Type of firm is either (S) for Supplier, (C) for Contractor, (B) for Bonding, (M) for Miscellaneous, or (CS) for Consultant. 5.

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

DAILY REPORT OF CHEMICAL STABILIZATION

Lime or Cement:		CEMENT BASE		Report Number:		1	
	Brand	Cemex		Project No.	STP-0008-01(043)	/ 301011301	
	Unit Mass	94.0	(LB/CF)		STP-9999-03(013)	/ 1074943011	
Water Source:		City of Poplarville			STP-9999-03(013)	/ 1074943012	
Raw Soil:	Туре	Unclassified		County	Pearl River, Jeffers	on & Warren Counti	es
	Standard Density	115.0	(LB/CF)	Contractor	Magnolia State Co	nstruction	
Class of Treatme	nt/Method of Mixing:	SOIL CEMENT SING	ILE PASS	 Length of Project (r	nile)	3.000	MILE
Depth of Treatm	ent: Specified:	8.0	INCHES	Progress to Date: (i	ncl. this report)	0.547	MILE
	Range Permitted (±1"):	7 - 9	NCHES		Processed:	2,890	FEET
Type of Rollers		PNEUMATIC		-		7,330.6	SY
		STEEL WHEEL		-	Allowed	258,903	LBS
Type Cure:		EPR-1		-	Percent Compl.	18.2	
			•				
		S	SECTIONS PROCESS	ED			
		1	2	3	4	5	Totals
Date		03/13/17	03/12/17	03/14/17	03/15/17	03/16/17	
Lane		Lt Ln	Rt Ln	Derby Rd	Lt Ln	Rt Ln	
Beg. Sta	ation	0+00	11+15	11+15	14+55	22+00	
End. Sta	ation	11+15	14+55	14+55	22+00	25+50	
Net Ler	ngth FT	1,115	340	340	745	350	2,890
Avg. W	idth FT	28.0	14.0	14.0	28.0	12.5	
Square	Yds.	3,468.9	528.9	528.9	2,317.8	486.1	7,331
CEMEN	IT % Specified	6.0%	6.0%	5.5%	6.0%	6.0%	
	Ordered: LB	117,387	17,898	16,406	78,434	16,450	
	Plus 5% LB	123,257	18,792	17,226	82,355	17,273	
	Spread: LB	148,000	24,000	21,000	104,000	22,500	
	Allowed: LB	123,257	18,792	17,226	82,355	17,273	258,903
Time:	Spread Begun	7:00 AM	7:00 AM	7:00 AM	7:00 AM	7:00 AM	
	1st Appl. Water	8:00 AM	8:00 AM	8:00 AM	8:00 AM	8:00 AM	
Corr	paction Completed	11:35 AM	11:35 AM	11:35 AM	11:35 AM	11:35 AM	
F	inishing Completed	12:35 PM	12:35 PM	12:35 PM	12:35 PM	12:35 PM	
Tempe	rature: Low (°F)	68	68	68	68	68	
	High (°F)	80	80	80	80	80	
Pulveri	zation Req'd: 60 %	85%	75%	77%	82%	75%	
Depth:	Actual INCHES	7.0	9.0	8.0	8.5	7.5	

Remarks: Remarks go in this blank

Distribution	Chata Mataviala Engineera	
Distribution:	State Materials Engineer	
CC:	District Materials Engineer	Inspector
	Project Engineer	
	Contract Administration Division Director	Or **
		Project Engineer
**(To be submitted v	vith final estimate with tickets attached.)	
NOTE: MIX DESIGN S	AMPLE ID NO. 10010125	Date

Construction Manual

Pg. 1 of 2

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

FIELD DENSITY REPORT FOR EMBANKMENTS (MT- 16)

PROJ	ECT NO.(s)					
COM	PONENT: Basement Soil	Design Soil		BORROW MAT'L: Class		
TREA	TMENT: None	Lime (by Wgt.), 1 st Appl		% 2 nd Appl.	%	
DESI	GN THICKNESS (Inches)			LIFT		
1.	Lot No.					
	SM Sample ID					
2.	Lot Size					
3.	Date of Test					
4.	Time of Test					
5.	Station Limits of Lot					
6.	Station No. at Test Site					
7.	Location from Left Edge, Ft.					
8.	Depth Below Sub- grade, Inches					
9.	Depth of Test, Inches					
S T	10. Std. Density, PCF					
D D E	11. Optimum Moisture, %					
N S	12. Std. Density Curve No.					
F	13. Gauge Moisture Bias (+) or (-)					
E	14. Dry Density, PCF					
D	15. Moisture, %					
D E	16. Density, % of Std.					
N S		VERIFICA	TION TESTS			
I T	17. Dry Density, PCF					
Y	18. Moisture, %					
E S	19. Density, % of Std.					
Т	20. Avg. Lot Density, % of Std.					
21.	Required Density, % of Std.					

Data from this form should be entered into SiteManager.	SIGNATURE
ENTERED BY	TITLE
DATE ENTERED	DATE

Construction Manual

Pg. 1 of 2

TMD-524

Rev. 6-17

MISSISSIPPI DEPARTMENT OF TRANSPORTATION

Jackson, Mississippi

STRUCTURAL BACKFILL, SUBBASE, BASE & SHOULDERS (MT - 16)

PRO	IECT I	NO.(s)							
COU	NTY(s	5)							
LOT	SIZE -				LOT	NO			
CON	TRAC	TOR			TEC	HNICIAN			
COM	IPON	ENT: Structural B	Backfill			— SubBa	se		
		Sho	ulders			— E	Base		
TREA	TME	NT: None	Cement (by V	/ol.)	% Lime (by Wgt.) [—]		😿 Fly Ash (by W	gt.) %
GRAI	NULA	R MAT'L: Class		Gro	up		BORROW	MAT'L: Class	
DESI	<u>GN TI</u>	HICKNESS (Inches	zj					1	
1.	Suble	ot No.	1	2	3		4	5	
		ample ID							
2.	Date	of Test							
3.	Time	e of Test							
4.	Stati Suble	on Limits of							
5.	Stati	on No. at Test Site							
6.	Loca Edge	tion from Left							
7.		h of Test, Inches							
S T D	8.	Std. Density, PCF							
D E N	9.	Optimum Moisture, %							
S	10.	Std. Density Curve No.							
F I E	11.								
L D D	12.	Dry Density, PCF							Average Density
E N S I T Y	13.	Moisture, %							of Lot %
Y	14.	Density, % of Std.							
15.	Requ	uired Density, %							

 Data from this form should be entered into SiteManager.
 SIGNATURE

 ENTERED BY
 TITLE

 DATE ENTERED
 DATE

GLOSSARY

Absorption	The process of a solid taking up liquid into its interior by capillarity.
Abrasion	The process of wearing away by rubbing.
Aggregate, coarse	Aggregates predominantly retained on the No. 4 Sieve.
Aggregate, fine	Those aggregates which entirely pass the 3/8" Sieve, almost entirely pass the No. 4 Sieve, and are predominantly retained on the No. 200 Sieve.
Aggregate, dense graded	A well-graded aggregate so proportioned as to contain a relatively small percentage of voids.
Aggregate, open graded	A well-graded aggregate containing little or no fines, with a relatively large percentage of voids.
Aggregate, well-graded	An aggregate possessing proportionate distribution of successive particle sizes.
Air-entraining agent	A substance used in concrete to increase the amount of entrained air in the mixture. Entrained air is present in the form of minute bubbles.
Air-entraining cement	Cements into which air-entraining agents have been interground at the mill.
Arterial highway	A general term denoting a highway primarily for through traffic, usually on a continuous route.
Asphalt	A black thermoplastic cementitious material, consisting predominantly of bitumens, and occurring in nature or obtained in the refining of petroleum. It may be of semi-solid or liquid consistency.
Asphalt liquid	An asphalt material having a soft or fluid consistency that is beyond the range of measurement by the standard penetration test. Liquid asphalts include the following normally designed types:
Rapid curing asphalt (RC)	Liquid asphalt produced by cutting back an asphalt cement with a naptha or gasoline-type diluent of high volatility.
Medium-curing asphalt (MC)	Liquid asphalt produced by cutting back an asphalt cement with kerosene-type diluent of medium volatility.

Slow-curing asphalt (SC)	Liquid asphalt produced by cutting back an asphalt cement with relatively low-volatile, or heavy petroleum oil. Also called "road oil."
Emulsified asphalt	An emulsion of asphalt cement and water which contains a small amount of an emulsifying agent; heterogeneous system containing two normally immiscible phased (asphalt and water) in which the water forms the continuous phase of the emulsion and minute globules of asphalt form the discontinuous phase. Emulsified asphalts may be of either the anionic or cationic type, depending upon the emulsifying agent.
At-grade intersection	An intersection where all roadways join or cross at the same level.
Auxiliary lane	The portion of the roadway adjoining the traveled way for parking, change of speed or for other purposes supplementary to through traffic movement.
Backfill	Material used to replace or the act of replacing material removed during construction; also may denote material placed or the act of placing material adjacent to structures.
Back sight	A sight taken on a known point, or a reading on a known elevation.
Back slope	A surface that slopes downward toward the traveled way.
Base lift	The layer or layers of specified or selected material of designed thickness placed on a subgrade to support subsequent lifts.
Batch	The combined ingredients which will produce a volume of mix.
Batch plant	A location where aggregates are proportioned by weight with either cement or bituminous components prior to mixing.
Batter pile	A pile that is purposely driven at an angle with the vertical.
Bench mark	A relatively permanent point of known or assumed elevation along the course of a survey line. (Abbreviate B.M.)
Berm	A shelf or ledge, usually narrow.
Binder	The material used to bind the aggregate particles together in a mixture.

Bitumen	The term bitumen covers a group of hydrocarbons including asphalt, tar, and coal tar pitch, soluble in carbon disulphide.
Bituminous concrete	A designed combination of dense graded mineral aggregate filler and bituminous cement mixed in a central plant, laid and compacted while hot.
Bituminous material	A substance which is characterized by the presence of bitumen, or one from which bitumen can be derived.
Bleeding (bituminous)	The presence of an excessive amount of asphalt cement on the surface of a bituminous pavement.
Bleeding (concrete)	The movement of mixing water to the surface of freshly placed concrete.
Blue tops	Hubs driven into the subgrade to indicate the finished subgrade elevation.
Camber	A slight upward curvature built into a structure or a structural member, to allow for the deflection of the structure under load.
Cap	A heavy horizontal member placed on top of the piles or posts of a trestle bent.
Catch basin	Collector box with settling chamber to catch debris and heavy soils carried by storm water.
Cement	The substance used for binding particles of aggregate together to form a pavement or structure. Examples include portland cement (PC) and asphalt cement (AC).
Cement paste	A mixture of portland cement and water.
Channelized intersection	An at-grade intersection in which traffic is directed into definite paths by islands.
Cloverleaf	A 4-leg interchange with loops for left turns and outer connections for right turns or two-way ramps for these turns. A full cloverleaf has ramps for two turning movements in each quadrant.
Completion date	The calendar date shown in the proposal on or before which the work contemplated under the contract shall be completed.
Concrete	The product resulting from mixing aggregates, such as sand, crushed stone, and gravel, with any cementing material.

Concrete, portland cement	The product resulting from the mixing of portland cement, aggregate and water.
Crack	A fissure or open seam not necessarily extending through the body of a material.
Crown	The highest point on the curved surface of a road; and a measure of the vertical distance between the highest point and the edge or lowest point of the surface.
Darby	A long handle wood float used in concrete finishing.
Daylighting	As applied to column forms. The providing of openings in the forms for the purpose of inspecting and working the concrete.
	As applied to highways in cuts. Cutting back the slope on the inside of a curve or at an intersection for the purpose of increasing sight distance.
Detour	A road designated as a temporary route to carry vehicular traffic around a section of a highway which is closed to through traffic.
Density	The weight per unit volume of a material, usually expressed in pounds per cubic foot.
Diamond interchange	A 4-leg interchange with a single one-way ramp in each quadrant. All left turns are made directly on the minor highway.
Divided highway	A highway with separate roadways for traffic in opposite directions.
Dowel	A load transfer element usually consisting of a plain round steel bar.
Drift pin	A metal pin, tapered at one or both ends, used to draw members of a steel structure into position by being driven through the corresponding rivet holes, or used to hold other members in position.
Embankment	A structure of soil, soil-aggregate or broken rock between the embankment foundation and the subgrade.
Embankment foundation	The material below the original ground surface which has physical characteristics that affect the support of the embankment.

Expressway	A divided arterial highway for through traffic with full or partial control of access and generally with grade separations at intersections.
Faulting	Differential vertical displacement of rigid slabs at a joint or crack.
Flexible pavement	A pavement structure which maintains intimate contact with and distributes loads to the subgrade and depends upon aggregate interlock, particle friction, and cohesion for stability.
Floor beam	A bridge member that extends from truss to truss or from girder to girder across the bridge and carries the stringers.
Fog seal	A thin application of bituminous material without cover aggregate.
Follower	A short piece of a pile that rests on the pile being driven and transmits the blow of the hammer to it. It is used when the top of the pile is below the leads of the pile driver.
Foresight	Sight taken to a point the location of which is to be determined.
Freeway	An expressway with full control of access.
Frontage road or street	A local road or street auxiliary to and located along the side of an arterial highway for service to abutting property and adjoining areas and for control of access.
Gradation	A general term used to describe the composition by size of the aggregate particles in a mixture. It is usually expressed as the proportion (percent) of the aggregate that will pass each of several sieves of different sizes.
Grade separation	A crossing of two highways, or a highway and a railroad, at different levels.
Grading limits	The lines beyond which no material is excavated in cuts and no material is deposited in fills.
Grout	A sand-cement mortar of liquid consistency, used to consolidate a mass of loose material or to fill seams, cracks, and joints.
Gusset plate	A plate of metal used at some joints of a framed structure.
Gutter flag	Area from the face of the curb and the edge of the pavement lane.

High-early strength cement	A type of portland cement which differs from regular cement in chemical composition and particle size (finer). Concrete made with high-early strength cement gains strength faster than that made with regular cement.
Highway separation	Any structure carrying highway traffic over or under another highway or street.
Inlets	A connection between the surface of the ground and a sewer for the admission of surface water which is thence conducted to a sewer.
Island	A defined area between traffic lanes for control of vehicle movements or for pedestrian refuge. Within an intersection, a median or an outer separation is considered an island.
Interchange	A highway separation with access connections between the highways.
Interchange ramp	A turning roadway at an interchange for travel between intersection legs.
Intermediate lift mixture	A graded bituminous mixture normally having less bituminous material than a surface lift mixture and used for construction of the course upon which the surface lift is placed.
Intersection	The general area where two or more highways join or cross, within which are included the roadway and roadside facilities for traffic movement in that area.
Intersection entrance	That part of the intersection leg for traffic entering the intersection.
Intersection exit	That part of an intersection leg for traffic leaving the intersection.
Intersection leg	Any one of the highways radiating from and forming part of an intersection. The common intersection of two highways crossing each other has four legs.
Joint	A designed vertical plane of separation or weakness. (Reference to concrete pavement)
Construction joint	A joint made necessary by a prolonged interruption in the placing of concrete.
Contraction joint	A joint within a rigid slab to control the location of transverse cracks.

Expansion joint	A joint located to provide for expansion of a rigid slab, without damage to itself, adjacent slabs, or structures.							
Longitudinal joint	A joint normally placed between traffic lanes to control longitudinal cracking.							
Laitance	A weak mortar that collects at the surface of freshly placed concrete; usually caused by an excess of mixing water or by over finishing.							
Leads	The two vertical members of a pile driver that steady the hammer and the pile during the driving.							
Leveling course	The layer of material placed on an existing surface to eliminate irregularities prior to placing an overlaying course.							
Local road or street	A street or road primarily for access to residence, business or other abutting property.							
Loop	A one-way turning roadway that curves about 270 degrees to the right to accommodate a left-turning movement. It may include provision for a left turn at a terminal to accommodate another turning movement.							
Lute	A tool that resembles a rake in general form but has a smooth, straight bottom edge in place of teeth. It is used to smooth and shape bituminous surfaces.							
Median	The portion of a divided highway separating the traveled ways for traffic in opposite directions.							
Median lane	A speed change lane within the median to accommodate left turning vehicles.							
Mesh	The square openings of a sieve.							
Mineral filler	Limestone dust, portland cement or other similar material.							
Moisture content	The proportion of moisture present in a material, expressed as a percentage of the oven dry weight.							
Moisture density relationship	The effect of moisture content on the density of a soil compacted according to certain specified conditions.							
Mud sill	A timber platform laid on earth as a bed for the sill of a framed trestle bent or one of the timbers in such a platform.							

Plant mixed surfacing	A designed combination of mineral aggregate and bituminous material mixed in a central plant.
Plasticity	The property of a soil which allows it to be deformed beyond the point of recovery without cracking or appreciable volume change.
Plastic limit	The moisture content which is the boundary between the plastic and semi-solid states of consistency of a soil. It is defined as the moisture content at which a soil will just begin to crumble when rolled into a thread approximately 1/8 inch in diameter.
Portland cement	The product obtained by pulverizing clinker consisting essentially of hydraulic calcium silicates, to which no additions have been made subsequent to calcination other than water and/or untreated calcium sulfate, except that additions not to exceed 1.0 percent of other materials may be interground with the clinker at the option of the manufacturer, provided such materials in the amounts indicated have been shown to be not harmful.
Prime coat	An application of a low viscosity liquid bituminous material to coat and bind mineral particles preparatory to placing a base or surface course.
Profilograph	A wheeled instrument used for testing riding qualities of road & bridge surfaces.
Pugmill	a type of mixer used for mixing bituminous paving materials. Mixing is accomplished by means of paddles on a rotating shaft.
Pumping	The injection of foundation material, either wet or dry, through joints or cracks or along edges of rigid slabs, due to vertical movements of the slab under traffic.
Quarry	A deposit of ledge rock from which the rock is excavated by cutting or blasting.
Quartering	A method of reducing the size of a sample without altering the particle size relationship.
Ramp	A connection roadway between two intersecting highways at a highway separation; also may include other access connections.
Reflection crack	A crack appearing in a resurface or overlay caused by movement at joints or cracks in underlying base or surface.

Refinery	A plant for producing petroleum products from crude petroleum oil.
Resurfacing	The placing of one or more new courses on an existing surface.
Right of access	The right of ingress to a highway from abutting land and egress from a highway to abutting land.
Rigid pavement	A pavement structure which distributes loads to the subgrade having as one course a portland cement concrete slab of relatively high bending resistance.
Roadbed material	The material below the subgrade in cuts and embankments and in embankment foundations extending to such depth as affects the support of the pavement structure.
Road mixed surfacing	A designed combination of material components of a flexible pavement mixed on the roadbed or in a traveling plant.
Sample splitting	See quartering.
Screens	In aggregate processing, sections of heavy wire mesh used to separate the aggregate into various size fractions.
Seal coat	A thin treatment consisting of bituminous material, usually with cover aggregate, applied to a surface course. The term includes, but is not limited to, sand seal, chip seal, slurry seal, contract seal, and fog seal.
Slurry seal	A seal coat consisting of a semi-fluid mixture of asphaltic emulsion and fine aggregate.
Segregation	The lack of homogeneity of an aggregate.
Specific gravity surface dry basis (solids)	the ratio of the weight in air of a given volume saturated of material at a stated temperature with its permeable voids filled with water to the weight of a volume of distilled water equal to the total volume of the material at a stated temperature. The total volume includes the combine value of solid matter, permeable voids and impermeable voids.
Standard drawings	Reproduction of approved drawings of standard details for specific items of work.
Standardized plant names	Official Code of Standardized Plant Names of the American joint committee on horticultural Nomenclature.

Stabilization	Modification of soils or aggregates by incorporating materials that will increase load bearing capacity, firmness, and resistance to weathering or displacement.
Soundness	The resistance of an aggregate to break down by expansion forces of freezing water or a crystallizing chemical.
Surface lift	The top layer of a pavement structure designed to accommodate the traffic load, which resists skidding, traffic abrasion, and the disintegration effects of climate.
Surface moisture	That part of the moisture content of aggregate which has not been absorbed into the particles.
Surface treatment	One or more applications of bituminous material and cover aggregate or thin plant mix, on an old pavement or any element of a new pavement structure.
Tack coat	An application of bituminous material to an existing surface to provide bond with a superimposed course.
Tie bar	A deformed steel bar or connector imbedded in the concrete across a joint to prevent separation of abutting slabs.
Traffic lane	The portion of a traveled way for the movement of a single line of vehicles.
Tremie	An arrangement of a hopper and a spout used for placing concrete.
Trestle bent	The term is used in connection with trestle type structures. A framed bent is a structural unit, consisting of posts that rest upon a sill and support a cap. A pile bent consists of piles that support a cap. The bent supports the stringers and deck.
Voids, permeable	Those voids in the individual particles of a dry material which become filled with water when the PERMEABLE material is soaked or otherwise processed in accordance with the procedure specified.
Voids, impermeable	Those voids in the individual particles of a dry material which do not become filled with water when the material is soaked or otherwise processed in accordance with the procedure specified.
Wale (or waler)	A (usually) heavy timber or beam used as a guard or additional support. (In cofferdams, wales support the sheeting).

e	Excess water forced to the surface of concrete by the shaking down of the material during its transportation or during compaction.
	The abrasion of aggregates. The wear test measures the resistance of an aggregate to abrasion.

USEFUL TABLES AND CHARTS

<u>CONVERSION OF MINUTES AND SECONDS TO</u> <u>DECIMAL PARTS OF A DEGREE</u>

Minutes		Seconds		Minutes		Seconds	
0'	0.000000	0"	0.000000	30'	0.500000	30"	0.008333
1	.016667	1	.000278	31	.516667	31	.008611
2	.033333	2	.000556	32	.533333	32	.008889
3	.050000	3	.000833	33	.550000	33	.009167
4	.066667	4	.001111	34	.566667	34	.009444
5	.083333	5	.001389	35	.583333	35	.009722
6	.100000	6	.001667	36	.600000	36	.010000
7	.116667	7	.001944	37	.616667	37	.010278
8	.133333	8	.002222	38	.633333	38	.010556
9	.150000	9	.002500	39	.650000	39	.010833
10	.166667	10	.002778	40	.666667	40	.011111
11	.183333	11	.003056	41	.683333	41	.011389
12	.200000	12	.003333	42	.700000	42	.011667
13	.216667	13	.003611	43	.716667	43	.011944
14	.233333	14	.003889	44	.733333	44	.012222
15	.250000	15	.004167	45	.750000	45	.012500
16	.266667	16	.004444	46	.766667	46	.012778
17	.283333	17	.004722	47	.783333	47	.013056
18	.300000	18	.005000	48	.800000	48	.013333
19	.316667	19	.005278	49	.816667	49	.013611
20	.333333	20	.005556	50	.833333	50	.013889
21	.350000	21	.005833	51	.850000	51	.014167
22	.366667	22	.006111	52	.866667	52	.014444
23	.383333	23	.006389	53	.883333	53	.014722
24	.400000	24	.006667	54	.900000	54	.015000
25	.416667	25	.006944	55	.916667	55	.015278
26	.433333	26	.007222	56	.933333	56	.015556
27	.450000	27	.007500	57	.950000	57	.015833
28	.466667	28	.007778	58	.966667	58	.016111
29	.483333	29	.008056	59	.983333	59	.016389

EXAMPLE: 0° 21' 09" = 0.350000 + 0.002500 = 0.352500°

DECIMAL PARTS OF A FOOT AND INCH

					DECIN	IAL PAR	TS OF	A FOOT					
Inches	0"	1"	2"	3"	4"	5"	6"	7"	8"	9"	10"	11"	Ins.
	.0000	.0833	.1667	.2500	.3333	.4167	.5000	.5833	.6667	.7500	.8333	.9167	
1/32	.0026	.0859	.1693	.2526	.3359	.4193	.5026	.5859	.6693	.7526	.8359	.9193	1/32
1/16	.0052	.0885	.1719	.2552	.3385	.4219	.5052	.5885	.6719	.7552	.8385	.9219	1/16
3/32	.0078	.0911	.1745	.2578	.3411	.4245	.5078	.5911	.6745	.7578	.8411	.9245	3/32
1/8	.0104	.0938	.1771	.2604	.3438	.4271	.5104	.5938	.6771	.7604	.8423	.9271	1/8
5/32	.0103	.0964	.1797	.2630	.3464	.4297	.5130	.5964	.6797	.7630	.8464	.9297	5/32
3/16	.0156	.0990	.1823	.2656	.3490	.4323	.5156	.5990	.6823	.7656	.8490	.9323	3/16
7/32	.0182	.1016	.1849	.2682	.3516	.4349	.5182	.6016	.6849	.7682	.8516	.9349	7/32
1/4	.0208	.1042	.1875	.2708	.3542	.4375	.5208	.6042	.6875	.7708	.8542	.9375	1/4
9/32	.0234	.1068	.1901	.2734	.3568	.4401	.5234	.6068	.6901	.7734	.8568	.9401	9/32
5/16	.0260	.1094	.1927	.2760	.3594	.4427	.5260	.6094	.6927	.7760	.8594	.9427	5/16
11/32	.0286	.1120	.1953	.2786	.3620	.4453	.5286	.6120	.6953	.7786	.8620	.9453	
3/8	.0313	.1146	.1979	.2813	.3646	.4479	.5313	.6146	.6979	.7813	.8646	.9479	3/8
13/32	.0339	.1172	.2005	.2839	.3672	.4505	.5339	.6172	.7005	.7839	.8672	.9505	13/32
7/16	.0365	.1198	.2031	.2865	.3698	.4531	.5365	.6198	.7031	.7865	.8698	.9531	7/16
15/32	.0391	.1224	.2057	.2891	.3724	.4557	.5391	.6224	.7057	.7891	.8724	.9557	15/32
1/2	.0417	.1250	.2083	.2917	.3750	.4583	.5417	.6250	.7083	.7917	.8750	.9583	1/2
17/32	.0443	.1276	.2109	.2943	.3776	.4609	.5443	.6276	.7109	.7943	.8776	.9609	17/32
9/16	.0469	.1302	.2135	.2969	.3802	.4635	.5469	.6302	.7135	.7969	.8802	.9635	9/16
19/32	.0495	.1328	.2161	.2995	.3828	.4661	.5495	.6328	.7161	.7995	.8828	.9661	19/32
5/8	.0521	.1354	.2188	.3021	.3854	.4688	.5521	.6354	.7188	.8021	.8854	.9688	5/8
21/32	.0547	.1380	.2214	.3047	.3880	.4714	.5547	.6380	.7214	.8047	.8880	.9714	21/32
11/16	.0573	.1406	.2240	.3073	.3906	.4740	.5573	.6406	.7240	.8073	.8906	.9740	11/16
13/32	.0599	.1432	.2266	.3099	.3932	.4766	.5599	.6432	.7266	.8099	.8932	.9766	13/32
3/4	.0625	.1458	.2292	.3125	.3958	.4792	.5625	.6458	.7292	.8125	.8958	.9792	3/4
25/32	.0651	.1484	.2318	.3151	.3984	.4818	.5651	.6484	.7318	.8151	.8984	.9818	25/32
13/16	.0677	.1510	.2344	.3177	.4010	.4844	.5677	.6510	.7344	.8177	.9010	.9844	13/16
27/32	.0703	.1536	.2370	.3203	.4036	.4870	.5703	.6536	.7370	.8203	.9036	.9870	27/32
7/8	.0729	.1563	.2396	.3229	.4063	.4896	.5729	.6563	.7396	.8229	.9063	.9896	7/8
29/32	.0755	.1589	.2422	.3255	.4089	.4922	.5755	.6589	.7422	.8255	.9089	.9922	29/32
15/16	.0781	.1615	.2448	.3281	.4115	.4948	.5781	.6615	.7448	.8281	.9115	.9948	15/16
31/32	.0807	.1641	.2474	.3307	.4141	.4974	.5807	.6641	.7474	.8307	.9141	.9974	31/32

WEIGHTS AND MEASURES

Volume Equivalents									
Cubic	Cubic	Cubic		U.S.	British				
Inches	Feet	Yards	Liters	Gallons	Imperial				
					Gallons				
1	0.0005787	0.00002143	0.01639	0.004329	0.003605				
1,728.0	1	0.03704	28.32	7.481	6.229				
46,656.0	27.0	1	764.6	202.0	168.2				
61.02	0.03531	0.001308	1	0.2642	0.220				
231.0	0.1337	0.004951	3.785	1	0.8327				
277.4	0.1605	0.005946	4.546	1.201	1				

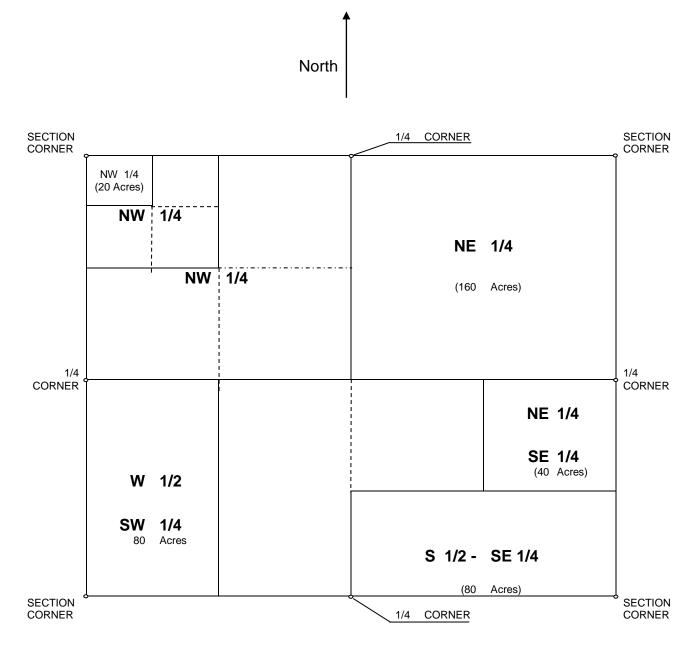
Weight Equivalent

Ounces	Pounds				
(Avoirdupois)	(Avoirdupois)	Short Tons	Long Tons	Metric Tons	Kilograms
1	0.0625	0.00003125	0.00002790	0.00002835	0.02835
16.0	1	0.0005000	0.0004464	0.0004536	0.4536
32,000.0	2,000.0	1	0.8929	0.9072	907.2
35,840.0	2,240.0	1.12	1	1.016	1.016
35,274.	2,204.6	1.102	0.9842	1	1,000.0
35.27	2.205	0.001102	0.0009842	0.001	1

Linear Measure Equivalents

Inches	Feet	Yards	Meters	Rods	Kilometers	Miles
1	0.08333	0.02778	0.02540	0.005051	0.00002540	0.00001578
12.0	1	0.3333	0.3048	0.06061	0.0003048	0.0001894
36.0	3.0	1	0.9144	0.1818	0.0009144	0.0005682
39.37	3.281	1.094	1	0.1988	0.001000	0.0006214
198.0	16.5	5.5	5.029	1	0.005029	0.003125
39,370.0	3,280.8	1,093.6	1,000.0	1,98.8	1	0.6214
63,360.0	5,280.0	1,760.0	1,609.3	320.0	1.609	1

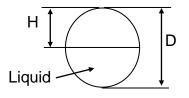
Square Measure Equivalents


Square	Square	Square	Square	Square		Square
Inches	Feet	Yards	Meters	Rods	Acres	Miles
1	0.006944	0.0007716	0.0006452	0.000025511		
144.0	1	0.1111	0.09290	0.003673	0.00002296	
1,296.0	9.0	1	0.8361	0.03306	0.0002066	
1,550.	10.76	1.196	1	0.03954	0.0002471	
39,204	272.25	30.25	25.29	1	0.006250	
6,272,640	43,560	4,840.	4,047	160	1	0.001562
		3,097,600	2,589,998	102,400.0	640.0	1

TYPICAL TOWNSHIP SUBDIVISION

	R12W	R11W					R11W	R10W
T 10 N	R A 36 N G E	ı N 31	32	33	34	35	R A 36 N G E	L I 31 N E TOWNSHIP
T 9 N	1	6	5	4	3	2	1	LINE 6
	12	7	8	9	10	11	12	7
	13	18	17	16	15	14	13	18
	24	19	20	21	22	23	24	19
	25	30	29	28	27	26	25	30
T 9 N	36	31	32	33	34	35	36	31 TOWNSHIP
T 8 N	1	6	5	4	3	2	1	LINE 6

TYPICAL SUBDIVISIONS OF A SECTION



- Not to Scale -

TABLE FOR DETERMINING VOLUME OF LIQUIDIN A PARTIALLY FILLED CYLINDRICAL TANK

The below listed values may be used for any cylindrical tank under the following conditions:

- 1. The capacity and diameter are known.
- 2. The tank is in a level position.
- 3. The ends of the tank are planes normal to the longitudinal axis

5.7.01		5.70		5.5	
RATION	PERCENT	RATIO	PERCENT	RATIO	PERCENT
H/D	CAPACITY	H/D	CAPACITY	H/D	CAPACITY
0.0	100.00	0.34	70.02	0.67	28.78
0.01	99.83	0.35	68.81	0.68	27.59
0.02	99.52	0.36	67.59	0.69	26.40
0.03	99.13	0.37	66.36	0.70	25.23
0.04	98.66	0.38	65.13	0.71	24.07
0.05	98.13	0.39	63.89	0.72	22.92
0.06	97.55	0.40	62.65	0.73	21.78
0.07	96.92	0.41	61.40	0.74	20.66
0.08	96.25	0.42	60.14	0.75	19.55
0.09	95.54	0.43	58.88	0.76	18.46
0.10	94.80	0.44	57.62	0.77	17.38
0.11	94.02	0.45	56.36	0.78	16.31
0.12	93.20	0.46	55.09	0.79	15.27
0.13	92.36	0.47	53.82	0.80	14.24
0.14	91.49	0.48	52.55	0.81	13.23
0.15	90.59	0.49	51.27	0.82	12.24
0.16	89.67	0.50	50.00	0.83	11.27
0.17	88.73	0.51	48.73	0.84	10.33
0.18	87.76	0.52	47.45	0.85	9.41
0.19	86.77	0.53	46.18	0.86	8.51
0.20	85.76	0.54	44.91	0.87	7.64
0.21	84.73	0.55	43.64	0.88	6.80
0.22	83.69	0.56	42.38	0.89	5.99
0.23	82.62	0.57	41.12	0.90	5.20
0.24	81.55	0.58	39.86	0.91	4.46
0.25	80.45	0.59	38.60	0.92	3.75
0.26	79.34	0.60	37.35	0.93	3.08
0.27	78.22	0.61	36.11	0.94	2.45
0.28	77.08	0.62	34.87	0.95	1.87
0.29	75.93	0.63	33.64	0.96	1.34
0.30	74.77	0.64	32.41	0.97	0.87
0.31	73.60	0.65	31.19	0.98	0.48
0.32	72.41	0.66	29.98	0.99	0.17
0.33	71.22			1.00	0.00
				(1-) frame tam	af taulu ta l'ausia

EXAMPLE: 1200 gallon tank, 60 inches in diameter, distance (h) from top of tank to liquid is 15 inches. h/d ratio = 15/60 = 0.25. From Table: Opposite h/d ratio of 0.25, percent capacity = 80.45. Volume of liquid = $0.8045 \times 1200 = 965.4$ gallons.

(Not to be used in lieu of Required Calibration).

WIND-CHILL CHART

EQUIVALENT TEMPERATURE °F												
Estimated		ACTUAL THERMOMETER READING °F										
Wind Speed												
MPH	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60
Calm	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60
5	48	37	27	16	6	-5	-15	-26	-36	-47	-57	-68
10	40	28	16	5	-9	-21	-33	-46	-58	-70	-83	-95
15	36	22	9	-5	-18	-36	-45	-58	-72	-85	-99	-112
20	32	18	4	-10	-25	-39	-53	-67	-82	-96	-110	-124
25	30	16	0	-15	-29	-44	-59	-74	-88	-104	-118	-133
30	28	13	-2	-18	-33	-48	-63	-79	-94	-109	-125	-140
35	27	11	-4	-20	-35	-49	-67	-82	-98	-113	-129	-145
40	26	10	-6	-21	-37	-53	-69	-85	-100	-116	-132	-148
Wind Speeds greater than 40 MPH have little additional effect		tle Da operly Per	<u> </u>		Increasing Great Danger Danger							
					DA	NGER	FRO		EZINC ESH	G OF E	XPOS	SED

To use the chart, find the estimated or actual wind speed in the left-hand column and the actual temperature in degrees F in the top row. The equivalent temperature is found where these two intersect. For example, with a wind speed of 20 mph and a temperature of 40°F, the equivalent temperature is 18°F and persons working outside should be clothed accordingly.

TABLE FOR ESTIMATING QUANTITIES OF BITUMINOUS MIXTURES

	Tons/Mile @ 110 lbs. per S.Y. per in.													
Tons to Sq. Yd.		.027	.030	.032	.037	.041	.055	.079	.082	.096	.110	.137		
Width	Sy/Mi	1/2"	9/16"	5/8"	11/16"	3/4"	1"	1 1/4"	1 1/2"	1 3/4"	2"	2 1/2"		
18	1056	291	327	363	399	436	580	727	872	1017	1161	1452		
20	1173	322	363	404	443	484	645	807	967	1129	1291	1631		
21	1232	339	381	423	466	508	678	847	1017	1185	1355	1694		
22	1290	355	399	444	488	532	710	888	1065	1242	1420	1774		
23	1349	371	417	464	511	557	742	927	1114	1299	1485	1856		
24	1408	387	436	484	532	580	774	968	1163	1354	1548	1935		
25	1466	405	454	504	555	605	806	1008	1210	1411	1613	2016		
26	1525	419	471	524	577	630	839	1049	1258	1468	1677	2097		
27	1584	436	490	544	599	653	871	1088	1307	1524	1742	2178		
28	1642	452	508	565	621	678	904	1129	1355	1581	1807	2259		
29	1701	467	526	584	643	701	936	1169	1403	1637	1872	2339		
30	1760	484	544	605	666	726	968	1210	1453	1694	1937	2421		
31	1818	500	563	626	687	750	1000	1249	1500	1750	2000	2500		
32	1877	517	580	645	710	774	1032	1291	1549	1806	2064	2581		
33	1936	532	599	666	732	798	1065	1332	1597	1863	2129	2662		
34	1994	548	617	686	754	823	1097	1371	1645	1920	2194	2742		
36	2112	580	653	726	798	871	1162	1452	1742	2033	2324	2904		
38	2229	623	689	766	843	919	1227	1532	1840	2146	2453	3066		

NOTE: The above values are based on 110 lbs. per sq. yd. per inch thickness, which value is usually used in estimating the tonnage on the plans. The actual compacted-in-place values range from approximately 105 lbs. to 110 lbs. for the neat dimension of the theoretical section. 110 lbs. is used in estimating in order to allow for a reasonable angle of repose at the edges.

RANDOM SAMPLING TABLE

	Random Numbers													
	1 2		ć	3	4		Ę	5	6		1	7		
1	815	722	048	964	248	826	665	147	767	147	133	870	796	957
	296	205	680	264	469	208	897	815	866	126	922	571	804	252
	007	573	390	664	846	400	328	613	989	960	647	645	960	982
	053	042	256	264	444	440	379	639	457	661	754	665	346	904
	919	264	641	943	267	259	399	222	715	645	914	424	078	696
2	005	047	879	773	422	351	740	995	818	426	438	766	620	766
	007	698	627	561	863	880	762	360	846	931	760	658	779	880
	690	657	958	552	189	273	265	086	408	599	298	801	127	485
	259	579	298	886	679	487	189	822	654	697	336	542	859	035
	097	834	735	129	308	183	282	357	059	416	349	378	389	880
3	915	425	279	301	040	863	298	997	555	848	290	092	796	732
	179	563	909	491	200	599	061	205	180	020	737	835	361	427
	465	185	188	496	023	510	206	587	281	154	569	533	205	873
	921	896	948	781	846	828	099	254	441	484	255	212	355	204
	145	627	356	812	396	473	568	563	616	495	896	201	774	180
4	984	075	333	642	016	924	669	984	048	455	465	041	468	457
	349	639	887	827	344	170	875	408	324	700	706	888	777	693
	700	282	394	464	232	534	949	258	699	948	196	728	001	667
	539	549	069	672	683	829	113	428	802	882	473	466	065	978
	760	295	409	073	587	257	229	800	399	961	411	142	606	595
5	907	522	839	299	658	388	504	837	556	143	317	573	562	415
	643	674	333	319	148	244	597	923	974	892	359	041	237	519
	089	003	316	253	616	340	812	356	568	693	483	455	785	817
	950	683	935	707	105	045	764	543	023	172	288	147	627	922
	156	104	204	383	911	219	595	816	271	482	467	229	322	856
6	164	818	041	533	794	214	830	923	366	312	596	917	727	023
	186	819	055	919	047	130	976	248	947	064	350	048	867	982
	731	351	474	876	990	710	888	710	187	202	231	729	351	430
	574	167	231	493	450	331	125	410	807	453	448	125	989	912
	304	839	237	144	150	457	227	197	099	743	686	304	707	254
7	166	350	859	982	323	523	168	692	827	384	738	325	419	444
	967	202	425	789	053	221	243	542	350	196	110	914	603	197
	389	642	143	826	665	441	006	355	359	191	633	296	033	598
	316	763	174	533	441	644	647	753	765	316	126	330	603	923
	789	194	236	278	479	025	376	208	721	393	348	089	850	878
8	039	333	570	742	634	173	628	399	056	912	688	255	388	469
	744	332	439	101	899	156	528	738	731	886	889	744	518	993
	090	009	207	954	926	454	095	888	165	511	793	975	162	660
	422	124	870	142	209	045	645	313	860	294	476	059	524	168
	161	080	265	417	819	656	742	563	000	671	775	706	287	341